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ABSTRACT
Meat adulteration is a significant problem that can pose
health risks economic losses to consumers. Current detec-
tion methods are hindered by high costs, limited capabilities,
or time-consuming sample preparation, making them only
accessible in laboratory tests and can not protect the safety
of end-users. This paper introduces MeatSpec, a low-cost and
user-friendly system for detecting meat adulteration using
spectral imaging, to move the adulteration inspection out
of laboratories. MeatSpec employs a multispectral camera
to reduce costs while quickly capturing spectral images, but
this leads to a decrease in spectral resolution and coverage.
To solve this challenge, the system uses spectral reconstruc-
tion technology and innovative designs tailored for meat
adulteration detection. This includes involving adulteration-
related prior information during the reconstruction training
phase and incorporating contrastive learning to enlarge the
distances among reconstructed samples belonging to various
adulteration types. Additionally, we devise distinct feature
extractors for different bands based on characteristics of the
reconstructed spectra and employ knowledge distillation
to mitigate error in full-band reconstructed spectra while
capturing features related to adulteration. Experimental eval-
uations on 347 paired spectral images demonstrate that our
system achieves a 91.06% accuracy in detecting multiple
adulteration types, merely 7.78% inferior to the expensive
professional solution, yet 21.58% superior to the baseline at
the same price point.
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1 INTRODUCTION
Meat adulteration is a growing concern with significant
health and economic implications. The practice of adulter-
ating meat products involves substituting animal-derived
ingredients, injecting water, and using illegal additives [5],
which can cause health risks such as foodborne illnesses,
allergic reactions, cancer, and kidney damage [6, 19, 35]. Ad-
ditionally, reports show end-of-chain nodes, like catering
and retail, are the most vulnerable victims of food fraud [46],
which is in-demanding for adulteration detection solutions
that are cost-effective, convenient, and without professional
operations.
However, existing solutions can not meet this require-

ment. High requirements for detection capabilities are re-
quired due to the notable similarity in composition between
adulterated and unadulterated meat samples [1]. Most meth-
ods encounter difficulty in achieving a balance between the
high detection capability and reasonable cost of the system.
Standard detection methods [33, 34, 36] are expensive and
require specialized laboratory settings. Hyperspectral solu-
tions [20, 21], while capable of obtaining accurate results
without sample preparation, require complex and expensive
equipment (costing over $10,000). Conversely, some low-
cost solutions like electronic noses [25] or image classifica-
tion [38, 43] exhibit limited detection capabilities to discern
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in-depth chemical characteristics, may miss the most harm-
ful adulteration problem, e.g., veterinary drugs or antibiotic
residues. Currently, there is no consumer-grade system that
can detect various meat adulteration.
In this paper, we try to bridge the gap by developing a

low-cost and user-friendly system for ubiquitous meat adul-
teration inspection based on spectral imaging. Byminimizing
the cost, our system can be deployed in ubiquitous dining
scenarios, including schools, catering outlets, or halal house-
holds to help users quickly get meat adulteration inspection
without professional experience. To accomplish this, we first
choose an off-the-shelf low-cost multispectral camera [44],
which costs one hundredth of a fine-grained hyperspectral
camera, as the hardware equipment to significantly minimize
the system expenses. Nevertheless, the decrease in hardware
cost leads to a decline in both spectral resolution and spec-
tral coverage range, both of which are essential for efficient
meat adulteration detection. Fortunately, we are inspired
by the fact that spectral reconstruction (SR) technology can
recover fine-grained spectral resolution and extend spectral
covering range of limited spectral measurements, such as
RGB or multispectral images [4, 27, 41, 49, 51]. This technol-
ogy presents an opportunity to extend the capability of a
low-cost multispectral camera to meet the requirements for
ubiquitous meat adulteration detection.
However, applying spectral reconstruction algorithms to

develop a low-cost meat adulteration detection system is
not a trivial task. It faces the following challenges: (1) High
Similarity of Multispectral Images. The resemblance be-
tween authentic and adulterated samples, especially those
with low adulterant concentration, yields analogous spectral
attributes, complicating adulteration detection. The low-cost
multispectral camera worsens the problem due to its coarse-
grained spectral resolution. However, existing spectral recon-
struction algorithms cannot reconstruct distinguishable re-
sults between two samples sharing similar or even the same
multispectral characteristics. (2) Full-Band Reconstruc-
tion Error. Since the spectral absorption characteristics of
different adulteration types span across diverse wavelengths,
it is essential for the system to cover a sufficiently broad
spectral range, usually 400-1000nm [20, 21]. However, no
low-cost multispectral devices can cover such a wide wave-
length range. When applying existing spectral reconstruc-
tion algorithm for full-band (i.e., 400-1000nm) reconstruction,
the errors and noises in reconstructed data will hinder its
usability for adulteration detection. (3) Lack Spectral Re-
construction Dataset. Spectral reconstruction algorithms
require paired (multispectral images, hyperspectral images)
data for training. However, obtaining exactly the paired data
is challenging. As the field-of-view (FOV) and focal length of
the spectral cameras are different, to cover the same scene,
the system should be used at a specific fixed distance and

angle, which is impractical to implement physically. Previ-
ous methods use opened hyperspectral images (HSI) dataset
and subsampled HSI as paired multispectral images (MSI)
for training, but this approach can result in different distri-
butions of training and test data, leading to reduced perfor-
mance during deployment.

To overcome the above challenges, we present MeatSpec,
the first consumer-grade spectral imaging system for ubiqui-
tous meat adulteration inspection. Specifically, MeatSpec can
distinguish between six common types of adulteration, such
as substitution, veterinary drug residues, and additives, and
use one of the most common targets in meat adulteration
cases, i.e., beef, as authentic samples [28]. MeatSpec solves
the above challenges with the following designs. Firstly,
we propose an application-oriented spectral reconstruction
(AOSR)module to restoremore distinguishable reconstructed
images for the cost-effective multispectral input. Specifically,
AOSR involves adulteration related prior information during
the SR training phase and incorporates contrastive learn-
ing that enlarges the distances among reconstructed sam-
ples belonging to various adulteration types (see § 3.1). Sec-
ondly, to suppress noise and error in full-band reconstructed
spectra and extract adulteration-related features, MeatSpec
proposes a reconstruction-adapted adulteration detection
(RAAD) module. RAAD designs distinct feature extractors
for different bands according to the error distribution char-
acteristics of the reconstructed spectra, and employs knowl-
edge distillation to align extracted features with the original
HSI’s features in the latent feature space (see § 3.2). Thirdly,
we collect a dataset comprising 347 paired reconstruction
training data through our designed pre-processing pipeline.
The pipeline involves several steps to ensure that the MSI
and HSI data are aligned and addresses challenges posed by
ambient light influence, resolution differences, and variations
in sample location during data collection (see § 3.3).

We implement a fully-functional prototype of MeatSpec at
a cost of less than $60. We demonstrate the system’s capabil-
ity in detecting minced beef adulteration. Six common types
of adulteration, namely substitution, dye substitution, low-
quality meat, water injection, edible additives, and toxic addi-
tives are considered. For each type of adulteration, we select
various typical adulterants, resulting in a total of 13 different
adulterants. Results show MeatSpec achieves a 91.06% accu-
racy in detecting multiple adulteration types, merely 7.78%
inferior to the expensive professional solution, yet 21.58% su-
perior to the baseline at the same price point, demonstrating
the effectiveness of the system design. We also verify that
MeatSpec is robust to various environmental setups, such as
meat size, placement, and ambient illumination.

In summary, we make the following contributions:
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• We develop MeatSpec, the first consumer-grade meat adul-
teration detection system that can accurately distinguish
authentic meat and identify the types of adulteration.

• We propose a novel spectral reconstruction scheme and
a classification model that fit the reconstructed spectral
images, enhancing the accuracy and reliability of meat
adulteration detection.

• We open the dataset [31] of beef adulteration detection
with 347 paired HSI and MSI data for 13 different adulter-
ants and design a pipeline for aligning spectral reconstruc-
tion training data.

• Experimental results demonstrate MeatSpec’s high accu-
racy in detecting various adulteration types and robustness
under various experimental and environmental setups.

2 BACKGROUND AND CHALLENGES
2.1 Background
2.1.1 Meat Adulteration Detection with Spectroscopy. Spec-
troscopy is a valuable technique for analyzing various prop-
erties of substances, including composition, structure, and
concentration [47]. In the context of meat adulteration, the
chemical profile, such as fatty acid and myoglobin, of each
meat species is unique, varying in type and quantity across
different tissues [9, 20, 21].
Figure 1 illustrates two typical spectral imaging system,

i.e., HSI and MSI, scanning the same meat sample. In princi-
ple, a spectral image can be formulated as:

𝐼𝑐 (𝑥,𝑦,𝑤) = 𝑅(𝑥,𝑦,𝑤)𝐸𝑐 (𝑤)𝑆𝑐 (𝑤), (1)
where 𝑅(𝑥,𝑦,𝑤) is the spectral reflectance of the object, 𝑥,𝑦
and 𝑤 are the width, height and wavelength channel re-
spectively. The spectral reflectance is the key attribute for
identifying substances. 𝐸𝑐 (𝑤) is the illumination spectrum,
and 𝑆𝑐 (𝑤) denotes the spectral response function, both de-
termined by the hardware parameters of the spectrum acqui-
sition system. Typically, the MSI systems tend to cover small
range and have few number of filters than HSI systems due
to the cost and size limitation [39, 44]. In contrast, hyper-
spectral imaging devices are always too expensive, costing
over $10,000, limiting their accessibility to the majority of
users [12].

2.1.2 Spectral Reconstruction. Spectral reconstruction (SR)
aims to recover the hyperspectral image (HSI) using a re-
duced set of measurements or observations, such as MSI,
RGB images, or compressed hyperspectral data. The ratio-
nale behind hyperspectral reconstruction is based on three
key characteristics.
• Inherent Redundancy. Neighboring spectral bands in HSI
often exhibit high correlation, allowing for leveraging in-
formation from adjacent bands to estimate the spectral
content of missing or unobserved bands.

Scene
𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒
𝑅(𝑥,𝑦,𝑤)

Illumination
𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 𝐸𝑐(𝑤)

Pixel (𝒙𝒊,𝒚𝒊)

(b) Multispectral Imaging
Wavelength

In
te

n
si

ty

MSI Camera
𝐶𝑎𝑚𝑒𝑟𝑎 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

𝑆𝑐(𝑤)

𝑆𝑐(𝑤)

𝒙
𝒚 𝒘

Wavelength

In
te

n
si

ty

Pixel (𝒙𝒊,𝒚𝒊)

(a) Hyperspectral Imaging

HSI Camera
𝐶𝑎𝑚𝑒𝑟𝑎 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

𝑆𝑐(𝑤)

𝑆𝑐(𝑤)

𝒙
𝒚 𝒘

Figure 1: Various spectral imaging processes of the
same meat sample.

• Sparsity. HSI tends to demonstrate sparsity in both the
spectral and spatial domains, allowing for exploiting this
sparsity to reconstruct the full hyperspectral image from
a reduced set of measurements.

• Spectral Mixing. HSI can be represented as a linear or non-
linear combination of a limited number of spectral signa-
tures, further facilitating the reconstruction process.
In this way, we can offer a promising solution to over-

come the cost barrier associated with acquiring HSI for meat
adulteration detection. Currently, lots of deep learning recon-
struction algorithms have been proposed and shown good
performance in RGB image reconstruction tasks [2, 4, 13, 27].

2.2 Challenges
However, the application of these state-of-the-art (SOTA) SR
algorithms for meat adulteration detection may face chal-
lenges when it comes to reconstructing accurate spectra
for similar substances. We conduct comparison experiments
using a SOTA spectral reconstruction algorithm, named
AWAN [27] to illustrate the problems.

(1) High Similarity of Multispectral Images. As we
mentioned before, the similarity in composition (e.g., fatty
and myoglobin) between adulterated and authentic meat
samples is the main challenge in the detection of meat adul-
teration [1]. The use of low-cost multispectral cameras ex-
acerbates the challenge. As shown in Figure 2, when using
a low-cost multispectral device to capture spectral images
of similar samples 𝐶1 and 𝐶2, the camera can only capture a
limited number of spectral bands, resulting in coarse-grained
spectra lacking detailed information. Within these limited
spectral bands, the MSI spectra of authentic meat and adul-
terated samples may look further similar or even identical.
Unfortunately, previous SR algorithms can not solve this

problem. The rationale of the spectral reconstruction is to
learn a one-to-one mapping from paired (MSI, HSI) for the
same scene. Therefore, for two different HSIs sharing similar
or even the same MSI, the SR algorithm can hardly restore
the subtle differences present in the original HSIs, making
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Figure 2: Illustration of how low-cost MSI imaging MSI
imaging makes it harder to tell similar samples apart.

Table 1: Comparison of the cross-type variances (Eu-
clidean distances) among raw spectra, MSI spectra, and
reconstructed spectra using SOTA SR.

Data Cross-type Variances
Raw Spectra 0.1951
MSI Spectra 0.1805
Recon (SOTA) 0.1764
MeatSpec 0.2311

the reconstructed spectra difficult to distinguish between
adulterated and authentic meat. Table 1 shows the Euclidean
distances between different adulteration classes of original
HSIs, cost-effective MSIs, and reconstructed data from SOTA
SR algorithm in our meat adulteration dataset [31]. We can
find that low-cost MSI imaging and the existing SR algo-
rithm both narrow the distance between different types of
adulterated samples.
(2) Full-Band Reconstruction Error. Since the spec-

tral absorption characteristics of different adulteration types
span across diverse wavelengths, it is essential for the system
to cover a sufficiently broad spectral range, i.e., 400-1000nm.
Thus, we conduct full-band spectral reconstruction and uti-
lize the reconstructed HSI data for adulteration detection.
However, most previous models for meat adulteration detec-
tion utilize the pure HSI data as input [21, 23], rather than
constructed HSI. Accordingly, these models do not consider
the following characteristics of reconstructed HSI data. First,
due to the reconstruction error, reconstructed HSI exists
more spectral-spatial noises and useless information than
pure HSI. Second, since our MSI data does not cover the visi-
ble band, it’s hard to accurately reconstruct hyperspectral
images in the visible band (see Figure 3(a)). These errors
and noises in the reconstructed data will hinder its usability
for adulteration detection. Thus, previous models cannot di-
rectly adapt to our reconstructed HSI data and will perform
bad. Moreover, we observe that the reconstructed spectra
has large cross-type variances inside the visible band (see
Figure 3(b)), which differs from the original HSI.

(3) Lack Spectral Reconstruction Dataset. In principle,
the spectral reconstruction algorithm needs to obtain paired
MSIs and HSIs under the same scene, i.e., having the same
𝑅(𝑥,𝑦,𝑤). However, obtaining exactly the same 𝑅(𝑥,𝑦,𝑤)
using the two systems is challenging. As the field-of-view
(FOV) and focal length of the two systems are different, to
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Figure 3: (a) Reconstruction error of average spectra
after SNV. Each color corresponds to one sample. (b)
Comparison of the cross-type variances between the
original HSI and reconstructed HSI in the visible and
near infrared bands.
Table 2: Comparison of reconstruction error between
simulated MSI and real MSI using model trained on
simulated MSI data.

Data RMSE MRAE
Simulated Test MSI 0.0095 0.0234
Real Test MSI 106.71 268.52

cover the same scene, the system should be used at a spe-
cific fixed distance and angle, which is impractical to imple-
ment physically. The previous reconstruction works utilizes
known response curves of RGB cameras to simulate train-
ing RGB data from HSI [27, 40]. However, there is no open
response curves library of MSI devices and we can not ac-
cess the response curve of an off-the-shelf MSI device. We
simulate several response curves using Gaussian distribu-
tion refers to [48]. However, simulation can not restore the
MSI data acquisition process, such as MSI detector response,
dark current noise, etc., resulting in different distribution of
training data and test data. As shown in Table 2, model train-
ing on simulated data significantly reduce reconstruction
performance during actual deployment.

3 SYSTEM DESIGN
Figure 4 shows the architecture of our system. The goal of
MeatSpec is to extract useful information from low-quality
data for accurate meat adulteration detection. To achieve this,
MeatSpec incorporates two modules: application-oriented
spectral reconstruction (AOSR in § 3.1) and reconstruction
adapted adulteration detection (RAAD in § 3.2) to process the
data collected from cost-effective MSI hardware. In addition,
we design a novel pipeline to align paired (MSI, HSI) data for
model training and collect a dataset comprising 347 paired
spectral reconstruction training data (see § 3.3).

3.1 Application-Oriented Spectral
Reconstruction

To address the challenge of high similarity, we need to mod-
ify the existing SR algorithm to enable it to capture the sub-
tle differences among similar MSI spectra of different meat
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Figure 4: The system structure of MeatSpec, which consists of two parts: application-oriented spectral reconstruc-
tion (AOSR § 3.1) and reconstruction-adapted adulteration detection (RAAD § 3.2).

categories. To this end, MeatSpec proposes an application-
oriented spectral reconstruction model, which introduces
application related prior information during the training
phase and incorporates contrastive learning to enlarge the
distances among reconstructed samples that share similar
MSIs inputs. By this approach, the reconstructed spectra
can be better discriminated among different categories of
meat samples, enhancing the accuracy and reliability of meat
adulteration detection. Figure 5 illustrates the structure of
our proposed AOSR model. As we can see, the objective of
the model consists of two parts: Lℎ is the reconstruction
loss between the reconstructed spectra and ground truth
spectra for the same sample, and L𝑐 denotes the contrastive
loss of the reconstructed spectra among different categories.
Two losses are weighted by 𝛼 to adjust the balance between
different learning objectives.
Base Reconstruction Model.We first leverage a SOTA

spectral reconstruction algorithm [27] as the backbone of
our AOSR model to reconstruct the hyperspectral image
𝑅(𝑥,𝑦,𝑤) for theMSI input𝑀 (𝑥,𝑦,𝑤0). The purpose of using
SR backbone is two-fold, increasing the spectral resolution
and extending the spectral coverage. Therefore, 𝑅(𝑥,𝑦,𝑤)
will have a wider covering range and more number of bands
than𝑀 (𝑥,𝑦,𝑤0) to support meat adulteration detection. We
make some simple modifications on [27] to fit our MSI re-
construction task. Firstly, as [27] takes RGB images instead
of MSI as input, we modify its input and output size to fit our
dataset. Then, since we utilize an off-the-shelf MSI camera,
which can not access its camera spectral sensitivity (CSS) pa-
rameters, we remove the CSS loss in [27]. After modification,
the reconstruction loss of our base model is defined as:

Lℎ =
1
𝑀

𝑀∑︁
𝑖=1

|𝑅𝑖 − 𝑅𝑖 |
𝑅𝑖

, (2)

where𝑀 is the total number of pixels, 𝑅𝑖 and 𝑅𝑖 denote the
reconstructed and original spectrum of the 𝑖-th pixel for the
sample. By minimizing the loss Lℎ , the model can narrow
the distance between the reconstructed HSI and real HSI.
Contrast-based Reconstruction. We then introduce

meat adulteration prior information and exploit contrastive
learning into the training phases. Our goal is to enable the

SOTA SR
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Figure 5: The working process of application-oriented
spectral reconstruction model.
model to distinguish between different classes of samples
that share similar or the same multispectral features. In light
of this, we construct contrastive loss that maximizes the
distance of reconstructed HSI among different categories.
We use Euclidean distance to measure the distance of the
reconstructed HSI between two samples. We then use the
introduced adulteration prior information to screen negative
samples for each sample. The negative samples are defined
as the samples from the categories that are different from the
target within one batch. Our contrastive loss is calculated as
follows:

L𝑐 = − 1
𝐵

𝐵∑︁
𝑏−=1,𝑏−≠𝑏

1(𝑦𝑏 ≠ 𝑦𝑏− )

√√√
1
𝑀

𝑀∑︁
𝑖=1

∥𝑅𝑖
𝑏
− 𝑅𝑖

𝑏− ∥2, (3)

where 𝐵 is the batch size. 𝑅𝑖
𝑏
and 𝑅𝑖

𝑏− are the 𝑖-th recon-
structed pixel of sample 𝑏 and sample 𝑏− . 𝑦𝑏 and 𝑦𝑏− are the
category label of sample𝑏 and𝑏− . The function indicates that
we only maximize the distance between the target sample 𝑏
and the others having different categories within the batch.
As a result, contrastive learning enables the reconstruction
algorithm to have better distinguishing capability. As de-
picted in Table 1, by using our design, the distances between
different adulteration classes of reconstructed HSIs improve
from 0.1764 to 0.2311. Further evaluation of the effectiveness
of our designed AOSR module is discussed in § 5.3.1.

3.2 Reconstruction-adapted Adulteration
Detection

3.2.1 Reconstruction Data Refinement. To combat the noise
and redundant information induced during spectral recon-
struction, we consider to refine the reconstructed data as



ACM MobiCom ’24, Nov 18-22, 2024, Washington D.C., USA Haiyan Hu, et al.

follows. First, we divide each reconstructed hyperspectral
image into 40×40 patches and conduct average pooling on
each patch to reduce the spatial-wise redundant information
and accelerate the training process. Next, for spectral-wise
denoising, we utilize a mean filter with a window size of
3 to smooth the spectra at each pixel. Then, we apply the
common spectral preprocessing method namely standard
normalized variate (SNV) on each pixel’s spectra to reduce
the scattering effect. After these operations, each processed
HSI cube with 40×40 pixels and 138 channels will be inputted
into our designed CNN classifier below.

3.2.2 Reconstruction-adapted CNN Model. As shown in Fig-
ure 6, our adulteration detection model contains three parts:
base model, feature distillation and visible information ex-
traction, based on the characteristics of reconstructed data.
Base Model Design. Our base model leverages the re-

fined HSI data (40×40×138) as input, which adopts three
2D convolutional layers, three batch normalization (BN) lay-
ers, three pooling layers and one fully connected (FC) layer.
Considering the large noise of reconstructed HSI, the first
convolution layer conducts down-sampling to reduce the
effect of noise and redundant information. Meanwhile, it
does not reduce the spectral-wise dimension, which instead
assigns each channel a weight for better feature extraction.
Besides, to further avoid overfitting by reconstruction noise,
a BN layer and maximum pooling are added after the first
convolutional layer. These three layers act as a special de-
noising module for reconstructed HSI. Then, the output will
be inputted to the second convolution layer where we lever-
age a larger kernel size to extract more global information,
because the reconstructed spatial texture may contain incor-
rect noise and lead to overfitting. So we pay more attention
to the global information and spectral dimension. The third
convolution layer has the same setting as the second one,
which further extracts more fine-grained features. After aver-
age pooling to remove the spatial dimension, we can obtain
a 32-length embedding, denoted by 𝐹𝑠 .
Feature Distillation. As shown in Figure 3(a), it’s hard

to accurately reconstruct the visible band. But, since the
spectral absorption characteristics of different adulteration
types are distributed in different bands, we need to utilize
the full-band information of the original HSI for effective
adulteration detection. To achieve this, we decide to exploit
the feature distillation approach. By guiding the feature ex-
tractor of reconstructed HSI with that of original HSI, we
can transfer the useful knowledge of full band, especially the
visible band, for better adulteration detection. Specifically,
we regard the base model as the student model and add a
branch of teacher model with the original HSI as input. Since
the original HSI has little noise, we can reduce its spatial
dimension to 20×20 pixels after SNV to further accelerate
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Figure 6: Model design of reconstruction-adapted adul-
teration detection.

the training. Meanwhile, the teacher model only needs to use
two convolutional layers with smaller kernel sizes than that
of the student model, and the corresponding BN layers and
pooling layers. After training the teacher model, we freeze
its model parameters and extract the 32-length embedding
before FC layer as the teacher feature, denoted by 𝐹𝑡 . Then,
we minimize the gap between the extracted features of the
student model (𝐹𝑠 ) and the frozen teacher model (𝐹𝑡 ) for
feature distillation.
Visible Information Aid. Though the visible band is

hard to reconstruct, contrastive learning itself can bring some
new information inside the reconstructed visible band, due
to the usage of negative samples. Figure 3(b) demonstrates
that the reconstructed visible band has more information
to distinguish diverse categories than the original visible
band. This additional information may help enhance the
classification performance. Therefore, we add a branch in our
model to extract the additional feature inside the visible band
of reconstructed HSI (i.e., the first 66 channels). We extract
an 8-length embedding, demoted by 𝐹𝑣 , and concatenate it
with our distilled feature. Finally, a formed 40-length feature
is fed to the FC layer for classification.
Weighted Loss. Eventually, the overall loss function for

our CNN model consists of a distillation loss L𝑘𝑑 and a
weighted cross-entropy (WCE) loss L𝑤𝑐𝑒 as:

L = 𝛽 · L𝑘𝑑 + (1 − 𝛽) · L𝑤𝑐𝑒 (4)

where 𝛽 is the weight to trade off the strength of feature
distillation for different objects. Note that we define a novel
weighted cross-entropy loss for our classification task. We
observe that different adulteration types have different de-
grees of reconstruction error. Larger errors may cause greater
difficulty to distinguish. Therefore, we compute the average
reconstruction error of each adulteration type as its class
weight, which is used in cross-entropy loss for better classi-
fication performance:

L𝑤𝑐𝑒 = − log(𝑃𝑐 )
1
𝑁𝑐

𝑁𝑐∑︁
𝑖=1

Δ𝑅𝑖 (5)
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Table 3: Adulterants and their concentrations in our
collected dataset. Six common types of adulteration
and 13 different adulterants with each containing two
concentrations are considered.

Types Adulterants Concentration

Substitute
Pork

Chicken
Duck

10%, 50%
10%, 50%
10%, 50%

Dye Substitute
(Color & Essence)

Pork
Chicken
Duck

10%, 50%
10%, 50%
10%, 50%

Low Quality Beef Offal
Stale Beef

10%, 50%
10%, 50%

Edible Additive Vegetable Protein 5%, 20%
Water Injected Water 5%, 20%

Toxic Additive
Antibiotic
Stimulant

Preservative

(0.75, 3) ug/kg
(0.3, 1.2) ug/kg
(0.15, 0.6) mg/kg

where 𝑁𝑐 denotes the sample number of the 𝑐-th adulter-
ation type, Δ𝑅𝑖 denotes the average reconstruction error
of 𝑖-th sample and 𝑃𝑐 denotes the classification probability
to 𝑐-th class. In this way, the classification model will pay
more attention to those classes with poor reconstruction per-
formance. Besides, for the feature distillation, we use MSE
loss as the distillation loss to measure the gap distance be-
tween the extracted student features and teacher feature, i.e.,
L𝑘𝑑 = 1

𝑁𝐹
| |𝐹𝑡 − 𝐹𝑠 | |2, where 𝑁𝐹 is 32. The distillation loss is

jointly used with cross-entropy loss during training, which
ensures the distillation trend towards high classification ac-
curacy. The effectiveness of our designed RAAD module is
evaluated in § 5.3.2.

3.3 Meat Spectral Reconstruction Dataset
Development

To achieve an effective data alignment, we design a pre-
processing pipeline through image processing algorithms.
The pipeline involves four steps to ensure that the MSI and
HSI data are aligned and addresses challenges posed by am-
bient light influence, resolution differences, and variations in
sample location during data collection. (1) Elimination of
Ambient Light. In real-world scenarios, the uncontrollable
intensity of environmental illumination may hinder learn-
ing a reliable reconstruction mapping. To overcome this, we
apply background subtraction by removing the spectral im-
age illuminated solely by ambient light. This eliminates the
environmental illumination and improves the accuracy of
subsequent analysis. (2) Median Filtering and ROI Ex-
traction. To enhance the quality of the selected images, we
employ median filtering to reduce noise. Additionally, for
meat samples placed in circular petri dishes, we utilize the

30cm

14cm

Cost-Effective
MSI

Tungsten
Lamp Array

Meat Sample

(a)

(b)

Power
Source

(b)

(c)

Tungsten Lamp
Array

Cost-Effective
MSI

(d)

10cm

Figure 7: Prototype ofMeatSpec, which cost <$60. Users
can finish adulteration detection by simply placing the
meat sample at the top of the box.
Hough Circle Transform [8] to extract the regions of interest
(ROI). To achieve angle alignment of the extracted ROIs, we
stick a black circular marker on each petri dish and rotate
ROIs so that the marker centers are aligned. This approach
compensates for variations in sample location and ensures
accurate analysis. (3) Spatial Alignment. After cropping
the images, we observe a resolution difference between the
MSI and HSI images. To address this, we down-sample the
larger image using nearest neighbor interpolation, ensuring
they have the same size. Then by aligning the marker and
meat centers along a vertical line, we eliminate misalignment
and ensure accurate correspondence between MSI and HSI
pairs. (4) Central Area Extraction. To focus on the most
informative regions, we extract central areas of 320×320
pixels from the aligned MSI and HSI cubes. This enables effi-
cient analysis and reduces computational complexity while
preserving essential information for further processing.

Based on this pre-processing pipeline, we collect a spectral
reconstruction dataset for minced beef adulteration inspec-
tion. Table 3 illustrates the adulteration types in our dataset.
Based on the survey of various types of adulteration and
their frequency in developing countries [28] and their harm-
fulness, we define six common types of adulteration. For
each type of adulteration, we select several typical adulter-
ants, resulting in a total of 13 different adulterants. Each
adulterant is used at two concentrations, including a mini-
mum adulteration concentration and a typical adulteration
concentration 1. The concentrations are set with reference
to various surveys and standards [10, 18, 22]. We produce
three samples for each adulterant and scan collect four (MSI,
HSI) images for each sample. Overall, a total of 347 paired
MSI and HSI images are collected, which can be accessed
in [31].

4 IMPLEMENTATION
We implement a compact and low-cost prototype using off-
the-shelf multispectral camera (named Monarch [44]) and
1For example, the "10%, 50%" indicates the 1:9 or 5:5 mass ratio of the
adulterant to the beef. The "(0.75,3) ug/kg" means that the 0.75 ug/kg or
3 ug/kg concentration additives are prepared and sprayed on the surface of
the beef sample.
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Table 4: Comparing the parameters of the MSI and HSI
cameras used in our experiment.

Parameters Cubert (HSI) Monarch (MSI)
Spectral Range 450-1000 nm 690-950nm
Spatial Size 1000×1000 pixels 1280×1024 pixels
Band Num 138 10

Wavelength
(nm)

[450:1000::4]
(i.e., 450, 454, 458,

462, ..., 1000)

713, 736, 759,
782, 805, 828, 851,

874, 897, 920
Cost >$10,000 ≈$50

light components. As shown in Figure 7, the prototype is a
semi-enclosed 3D printed box using white resin. The multi-
spectral camera is placed at the bottom of the box with the
lens facing up. Users can finish sample scanning by simply
placing the meat sample at the top of the box. To capture
one image, it takes about 750𝑚𝑠 .
Multispectral Camera. Monarch has two advantages

over other commercial multispectral cameras on the market
that prompt us to choose it. First, most low-cost multispectral
cameras on the market only cover visible light [39], but
Monarch operates at frequencies ranging from 690𝑛𝑚 to
950𝑛𝑚 in the near-infrared band, providing more spectral
features relevant to meat adulteration detection. Second, it’s
cheaper, Monarch uses the novel MEMS spectral imaging
chip based on Fabry-Perot broadband filter to dramatically
reduce the cost of hardware, which costs around $50 for mass
production.

Light Source.We need to ensure sufficient light intensity
at the sample to produce clear multispectral images. To this
end, we place 12 full-band tungsten lamps (VCC7216-ND) at
a distance of 10𝑐𝑚 from the top of the box. All the lamps are
connected in parallel and powered by a teensy@4.0 develop-
ment board [37]. In addition, To ensure uniform illumination
distribution, as shown in Figure 7 (c), the 12 lamps are uni-
formly placed at the the four walls of the box.

5 PERFORMANCE EVALUATION
5.1 Study Setup
5.1.1 Training Scheme. As mentioned in § 3.3, the paired
HSI and MSI in our dataset both have 320×320 pixels after
processing. To train the AOSR model, we split the images
into 64×64 patches, with a batch size of 32, an initial learning
rate of 10−4, and a cosine preselection annealing decline to
10−6. The model converges with a loss function weight (𝛼) of
0.95 after 20000 iterations. To train the RAAD model, we use
a batch size of 64, a distillation weight (𝛽) of 0.8, an initial
learning rate of 5 × 10−4, and cosine preselection annealing
with a rate of 10−6. After training 1000 epochs, to prevent
falling into a local optimum under cosine annealing, we reset
the learning rate to a constant value of 5×10−5 and continue

training the model with additional 1000 epochs. The RAAD
classification model converges to the final result after 2000
epochs.

5.1.2 Metrics. We reformulate the meat adulteration inspec-
tion task into a multi-classification task, which not only
should distinguish the adulterated sample from the authen-
tic sample but also detect the adulteration types. As depicted
in § 3.3, we consider six common types of adulteration. Thus,
we have 7 classes in total, including authentic beef (0), sub-
stitution (1), dye substitution (2), low-quality meat (3), ed-
ible additives (4), water injection (5), and toxic additives
(6). To evaluate the performance of meat adulteration multi-
classification task, we exploit theMacro-averaging Accu-
racy and F1 score as the metrics.

5.1.3 Baselines. We compare our system’s performancewith
several baselines. (i) RGB. We use the corresponding RGB
images generated by the captured HSI to conduct the clas-
sification. We build a ResNet [14] network to classify the
generated RGB images. (ii) MSI. We directly use MSI images
for classification. We use random forest, which is typically
used in previous works [24], to classify the spectra that av-
eraged in spatial dimension. (iii) MSI (SOTA SR). We use the
existing SOTA spectral reconstruction algorithm [27] to re-
construct the HSI, and then use random forest to classify the
average spectra in spatial dimension according to the con-
ventional methods [24]. (iv) HSI. We use hyperspectral data
collected by an expensive HSI camera [12] for classification,
and use our designed CNN classifier. Tabel 4 shows more
detailed parameters of the HSI camera comparing with our
MSI camera. Note that although the performance of Meat-
Spec is supposed to be inferior to this baseline, MeatSpec far
outperforms this solution in terms of price.

5.2 Overall Performance
We first evaluate MeatSpec’s performance on different adul-
teration type detection by conducting stratified 5-fold cross
validation2, by which the ratio between the target classes is
the same in each fold as it is in the full dataset.

5.2.1 Baselines Comparison. Figure 8 compares the accuracy
and F1-score of our MeatSpec with baselines, revealing three
important findings. Firstly, using unmodified MSI or RGB for
adulteration detection results in poor performance, with less
than 70% accuracy, due to their limited and coarse-grained
spectral information. Secondly, applying the existing SOTA
SR algorithm to MSI only slightly improves the system’s per-
formance, since it fails to recover fine-grained differences and
combat reconstruction errors in reconstructed HSI, leading
to low classification accuracy. Finally, our designed system
2Doing stratified cross-validation can ensure that the cross-validation result
is a close approximation of generalization error.
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Figure 8: Stratified 5-fold cross-validation performance
comparison between MeatSpec and baselines.
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meat adulteration types detection

achieves 91.06% accuracy for the meat adulteration type de-
tection task, which is 21.58% higher than that of the direct
use of MSI and 14.95% higher than that of the MSI using
the existing reconstruction algorithm, demonstrating the
effectiveness of the system design.

5.2.2 MeatSpec’s Performance. Figure 9 and Figure 10 present
the confusion matrix and AUC-ROC curve of MeatSpec for
detecting multiple meat adulteration types, respectively. We
can observe the consistently good performance of Meat-
Spec across all adulteration types. Notably, MeatSpec can
accurately distinguish authentic beef samples from adul-
terated samples, achieving an accuracy of 92%, even with
various types of adulteration. Moreover, we conduct two-
dimensional t-distributed stochastic neighbor embedding
(t-SNE) projections [45] to illustrate the embedding repre-
sentations of MeatSpec. Figure 11 displays our results, which
indicate that MeatSpec displays clear clustering of all classes,
demonstrating its aptitude for identifying various adulter-
ation types.

5.3 Ablation Study
We then investigate the modules of MeatSpec by conducting
ablation study to demonstrate the effectiveness of the system
design.

5.3.1 Effectiveness of Application-oriented Spectral Recon-
struction. From the results shown in Table 5, we can find that
by introducing AOSR scheme, the system improves about
7.76% accuracy than the baseline, which indicates its effec-
tiveness of gaining more spectral features related to adul-
teration types. Specifically, by involving adulteration prior
information and contrastive loss, the distance between the
selected sample and the samples of other adulteration classes
is increased, thus helping the reconstruction model to learn
the nuances between the adulteration samples of different
classes.

5.3.2 Effectiveness of Reconstruction-adapted Adulteration
Detection. The effectiveness of the RAAD structure is re-
flected in the results of Table 5, which show an accuracy
improvement of 11.25% compared to the baseline. This struc-
ture enhances the model’s recognition ability in two ways.
Firstly, it extracts more information from the visible light
band to compensate for the large reconstruction error of the
reconstructed data. Secondly, by narrowing down the fea-
tures of the HSI and reconstructed images, the model learns a
feature space that is more similar to the HSI feature, thereby
improving classification performance.

5.4 Impacts on Experimental Conditions
We then evaluate MeatSpec under various experimental and
environmental conditions, as shown in Figure 12. We con-
duct the experiments using beef and one typical adulteration
type, i.e., substitute. For each experimental condition, we pre-
pare two authentic samples and two substitute adulteration
samples containing 50% of pork. Each sample is scanned by
our prototype back and front twice, thus introducing eight
authentic images and eight adulteration images. Both the
reconstruction model and classification model are trained
using all data collected in normal experimental conditions.

5.4.1 Varying Meat Size and Height. Our system is designed
to be flexible, allowing users to vary the amount of meat
used for detection, which can affect the size, shape, and
thickness of the sample. To test our system’s performance, we
create samples of four sizes and five thicknesses. The results
are shown in Figure 13(a)-13(b). We find that the system
is more robust to different sizes than thicknesses. This is
because our system eliminates the influence of ambient light
by collecting a background map before scanning the sample.
While the thickness of the sample can impact the system’s
performance, we find that our system performs well when
the sample thickness is more than 1cm. Since beef patties on
the market are generally 1-2cm thick, our system can handle
most situations with ease.

5.4.2 Varying Meat Minced Size. The physical structure of
minced beef with different degrees of grinding is different,
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Ablation Models Accuracy F1-Score
MSI (SR) 76.11% 74.11%
MeatSpec (w/o RAAD) 83.87% 81.86%
MeatSpec (w/o AOSR) 87.36% 87.09%
MeatSpec (our) 91.06% 91.50%

Table 5: MeatSpec’s performance comparing with
ablationmodels and different base reconstruction
models.
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Figure 12: Illustration of various experimental conditions.
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Figure 13: MeatSpec performance under various experimental and environmental conditions.

which will affect the reflection and scattering route of light.
Thus, we set the meat grinder to four different mixing times,
which directly decide the degrees of grinding. As can be seen
from Figure 13(c), when the stirring time is less than one
minute, the performance of the system is affected, especially
the performance of the production sample is significantly
slightly reduced, which may be because the adulterants are
not evenly mixed due to insufficient stirring. The spatial
distribution of the collected MSI images is quite different
from that of the fully mixed samples in the training set. This
problem can be solved by calibration the model using coarse-
particle samples. While, when the samples are fully mixed
and grinding, the system can achieve good performance.

5.4.3 Varying Meat Temperature. The temperature of food
affects its molecular thermal motions, which in turn affects
the diffuse reflection of light. To evaluate MeatSpec under
different food temperatures, we consider four common meat
temperatures. The prepared samples are refrigerated at -
18𝑜𝐶 for 8 hours and then thaw in normal temperature. Fig-
ure 13(d) reports the results, which indicate huge influence of
temperature on our system. However, upon in-depth analy-
sis of the classification results, we find that the misidentified
samples are classified as either water-injected or low-quality
substitution. This may be due to the precipitation of a lot of
water in the process of refrigeration and thawing, and too
long thawing time leads to the sample is not fresh.
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Figure 14: MeatSpec performance on generalization to various experimental setups.

5.4.4 Varying Sample Placement. Since our light source does
not illuminate the sample uniformly from the center but from
four sides, the meat samples may be exposed to different
intensity light sources when placed at different scanning
positions on the top. To test the robustness of the system to
different positions, we use 6cm samples placed in five differ-
ent areas on the top. The results in Figure 13(e) show that
our system is not sensitive to the placement of the samples.
This may be attributed to our background elimination algo-
rithm and the classification model’s pooling process, which
eliminates the unevenness of the light field distribution
5.4.5 Varying Ambient Illumination. Ambient light can in-
terfere with the readings of the MSI camera, which can nega-
tively impact the performance of MeatSpec. Thus, we inves-
tigate the performance of MeatSpec under various realistic
lighting conditions. We test the system under four different
light settings. As shown in Figure 13(f), MeatSpec’s per-
formance is stable under different lighting conditions, as
expected. This is because we place the camera at the bottom
of the semi-closed box, blocking the majority of the ambient
light, and utilize the proper background subtraction method.

5.4.6 Varying Authentic Beef Type. Minced beef on the mar-
ket may be prepared using different types of beef. We select
three representative beef parts, which are commonly used as
raw materials for making ground beef 3. We select a brand
from a different origin for each part and calibrate the model
using three parts of beef from one of the sources and then
test it on samples from other sources. The results are shown
in Figure 14(a). We can see that after calibration, the model
also has good generalization performance for different parts
of beef. If the users want to extend the model to more beef
parts, only need to collect a small number of new parts of
the sample to calibrate the model.
5.4.7 Varying Adulteration Meat Type. The same substitu-
tion class of adulteration may also include different kinds of
substitutions, such as pork adulteration with different parts
of pork. Therefore, taking pork adulteration as an example,
we consider the adulteration of three different parts of pork.
The model is also calibrated using a variety of pork parts,
3https://en.wikipedia.org/wiki/Ground_beef

and Figure 14(b) shows the results on the remaining sam-
ples. As shown in the Figure 14(b), except for leg pork, the
model has a good prediction performance for different parts
of adulterated pork, and leg pork is incorrectly classified as
the alternative category of crying dye, which may be caused
by the rich content of myoglobin in leg pork.
5.4.8 Varying Adulteration Concentration. We also experi-
ment with adjusting the concentration of adulterants. Since
different adulteration concentrations have a greater impact
on sample composition, we mainly focus on whether the
reconstructed spectra of adulterants with different contents
could be effectively distinguished from each other. As shown
in Figure 14(c), the average spectra of reconstructed hyper-
spectral images under three adulteration concentrations are
presented. It is evident that as the adulteration concentration
increases, the reflectance of the spectra becomes higher, and
the spectra of samples with different adulteration concentra-
tions can be easily distinguished from each other.
5.4.9 Multi-Type Adulteration. We further evaluate Meat-
Spec’s performance in predicting multiple types of adulter-
ants simultaneously. We include five two-type mixed cases
and two three-type mixed cases commonly found in real
scenarios. The label of mixed cases included 1-2, 1-3, 1-4,
2-3, 2-4, 1-2-3, and 1-2-4. Each case involves mixing different
adulterated samples with 50% concentration and creating
one sample to fine-tune the classification model and multi-
ple samples for testing. The model, trained on a single-type
dataset, achieved an 86.48% F1-Score, with a 68.85% exact
match ratio for multi-label and a 92.39% accuracy for each
instance. These results demonstrate MeatSpec’s effectiveness
in detecting multiple types of adulterants by distinguishing
their unique spectral characteristics, thanks to MeatSpec’s
ability to restore fine-grained spectral information.

6 RELATEDWORK
In this section, we briefly review existing works related to
meat adulteration detection, hyperspectral reconstruction
algorithms and cost-effective spectral systems.
Meat Adulteration Detection. Various methods have

been developed for detecting meat adulteration, each with
its own advantages and limitations [7, 52]. Early detection

https://en.wikipedia.org/wiki/Ground_beef
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methods [26, 33, 34, 36], offer accurate detection of animal
DNA compositions in meat products but often involve com-
plex sample preparation procedures. Electronic noses and
spectroscopy techniques [20, 21, 25] are capable of obtain-
ing accurate results without sample preparation but require
expensive equipment. Smartphone-based solutions only rely
on visual features [32, 38, 42, 43] thus may struggle to scale
up to more harmful adulteration scenarios involving exces-
sive additives. In contrast, MeatSpec uses a reconstruction
algorithm to improve the spectral granularity of the system,
thus significantly reducing the cost of the system and can
identify more adulterants.

Hyperspectral Reconstruction Algorithms. The idea
of hyperspectral reconstruction is to reconstruct full hyper-
spectral data from limited spectral measurements, reducing
the need for expensive and bulky hardware components.
Conventional spectral reconstruction methods rely on hand-
crafted hyperspectral priors [3, 11, 29]. Recently, deep learn-
ing techniques have been applied to learn the mapping func-
tion from RGBs to HSIs [2, 27, 41, 49–51]. However, these
algorithms always ignore the deployment of reconstructed
spectra in practical applications. In the context of meat adul-
teration detection, by combining advanced spectral recon-
struction algorithms with application-specific adjustments,
MeatSpec provides a more tailored and effective solution for
meat adulteration detection.
Cost-Effective Spectral System. Spectral systems are

valuable for substance identification but expensive, which
always cost $10,000, and inaccessible for many users. Re-
searchers are working on making them more affordable and
accessible. To address this, efforts have been made to sim-
plify one-dimensional spectrometers using cheap LED and
photodiode components [15–17, 30]. However, since lack
of spatial-wise information, these systems can only work
on liquid samples or homogeneous samples. Some systems
use fewer components, sacrificing spectral resolution and
requiring a large physical size [13]. There have also been
efforts to use smartphones as spectral imaging systems, such
as MobiSpectal [40], which focuses on the robustness of re-
constructed spectra under different ambient light conditions.
In contrast, MeatSpec operates in a semi-closed environment
with minimal environmental interference, allowing it to fo-
cus on improving the quality of the reconstructed spectrum
for fine-grained applications.

7 DISCUSSION
In this section, we will discuss the limitations and potential
extensions of MeatSpec.

Unseen Adulterants and Concentration. MeatSpec fo-
cuses on beef adulteration and demonstrates high accuracy in
detecting six common types of adulteration. However, due to
the complexity of the adulteration issue, addressing all cases

in one study is challenging. MeatSpec faces practical usage
challenges with unseen cases. To address unseen concentra-
tion of known adulterants, the reconstruction model can be
reused, but the classification model requires retraining with
new targets. For a new adulteration type, fine-tuning the
reconstruction model by incorporating a new loss function
comparing the new type with others is necessary. Addition-
ally, MeatSpec’s detection capability is limited to surface-
level adulterants due to the light’s penetration depth. For
instances of sub-surface adulteration, alternative detection
methods should be explored.
Hardware Selection. Our paper expands the capability

domain of low-cost spectral devices by using algorithms to
distinguish samples with high similarity. If there is a similar
performance but lower cost of multi-spectral hardware or
better performance of spectral reconstruction algorithms, the
framework of MeatSpec we designed can still be improved
on alternative hardware and base reconstruction models.

Extension Applications. Furthermore, our proposed sys-
tem has the potential to be used to solve other food adul-
teration problems, such as cereals and dairy products. By
offering such a consumer solution for food adulteration de-
tection, we can integrate these solutions into centralized
dining settings to ensure the food safety of the users.

8 CONCLUDING REMARKS
This paper presents MeatSpec, a consumer-grade spectral
imaging system for meat adulteration inspection. MeatSpec
simultaneously guarantees the fine-grained spectral capabil-
ity required for meat adulteration detection and maintains
a low-cost hardware setup. To achieve this, MeatSpec uti-
lizes the existing spectral reconstruction technology and
incorporates two novel modules, namely AOSR and RAAD.
AOSR involves adulteration-related prior information and
contrastive learning to reconstruct more easily distinguish-
able full-band hyperspectral images. RADD devises a CNN-
based adulteration detection model based on the error distri-
bution characteristics of the reconstructedHSI, and enhanced
by knowledge distillation structure. We also assemble an ex-
tensive dataset containing diverse adulterants. Experimental
evaluations demonstrate that our system achieves a 91.06%
accuracy in detecting multiple adulteration types, which
surpasses the baseline performance without our proposed
designs by 21.58%.
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