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Abstract—Meat adulteration is a significant problem that can
pose health risks economic losses to consumers. Current detection
methods are hindered by high costs, limited capabilities, or time-
consuming sample preparation, making them only accessible in
laboratory tests and can not protect the safety of end-users.
This paper introduces MeatSpec, a low-cost and user-friendly
system for detecting meat adulteration using spectral imaging, to
move the adulteration inspection out of laboratories. MeatSpec
employs a multispectral camera to reduce costs while quickly
capturing spectral images, but this leads to a decrease in spectral
resolution and coverage. To solve this challenge, the system
uses spectral reconstruction technology and innovative designs
tailored for meat adulteration detection. This includes involving
adulteration-related prior information during the reconstruc-
tion training phase and incorporating contrastive learning to
enlarge the distances among reconstructed samples belonging
to various adulteration types. Additionally, we devise distinct
feature extractors for different bands based on characteristics of
the reconstructed spectra and employ knowledge distillation to
mitigate error in full-band reconstructed spectra while capturing
features related to adulteration. Further, we extend our system to
MeatSpec-G to improve its generalizability to varied adulteration
conditions and unknown adulterants. To achieve this, we first
propose a feature alignment-based training scheme to reduce
the feature gap among samples of diverse concentrations and
admixture patterns. Then, we propose a cascaded open-set recog-
nition framework that decouples uncertainty quantification and
anomaly feature discrimination, to address the limitations of soft-
max confidence in detecting distribution shifts and reconstruction
artifacts. Experimental evaluations on 347 paired spectral images
demonstrate that our system achieves a 91.06% accuracy in
detecting multiple adulteration types, merely 7.78% inferior to
the expensive professional solution, yet 21.58% superior to the
baseline at the same price point. Moreover, our system can
generalize to achieve an 88.89% detection accuracy in unknown
adulteration conditions with a 27.78% improvement, and an
83.33% detection accuracy for unknown adulterants.

Index Terms—Meat Adulteration, Spectral Imaging and Re-
construction

I. INTRODUCTION

MEAT adulteration is a growing concern with significant
health and economic implications. The practice of adul-
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terating meat products involves substituting animal-derived in-
gredients, injecting water, and using illegal additives [1], which
can cause health risks such as foodborne illnesses, allergic
reactions, cancer, and kidney damage [2], [3], [4]. Detecting
adulterants in meat is crucial for addressing health risks,
tracing the source of adulteration, and managing supply chains.
In addition, reports show end-of-chain nodes, like catering and
retail, are the most vulnerable victims of food fraud [5], which
is in-demanding for adulteration detection solutions that are
cost-effective, convenient, and without professional operations.

However, existing solutions can not meet this requirement.
High requirements for detection capabilities are required due
to the notable similarity in composition between adulterated
and unadulterated meat samples [6]. Most methods encounter
difficulty in achieving a balance between the high detection
capability and reasonable cost of the system. Standard detec-
tion methods [7], [8], [9] are expensive and require specialized
laboratory settings. Hyperspectral solutions [10], [11], while
capable of obtaining accurate results without sample prepara-
tion, require complex and expensive equipment (costing over
$10,000). Conversely, some low-cost solutions like electronic
noses [12] or image classification [13], [14] exhibit limited
detection capabilities to discern in-depth chemical charac-
teristics, may miss the most harmful adulteration problem,
e.g., veterinary drugs or antibiotic residues. Currently, there
is no consumer-grade system that can detect various meat
adulteration.

In this paper, we try to bridge the gap by developing a low-
cost and user-friendly system for ubiquitous meat adulteration
inspection based on spectral imaging. By minimizing the cost,
our system can be deployed in ubiquitous dining scenarios,
including schools, catering outlets, or halal households to
help users quickly get meat adulteration inspection without
professional experience. To accomplish this, we first choose
an off-the-shelf low-cost multispectral camera [15], which
costs one hundredth of a fine-grained hyperspectral camera,
as the hardware equipment to significantly minimize the
system expenses. Nevertheless, the decrease in hardware cost
leads to a decline in both spectral resolution and spectral
coverage range, both of which are essential for efficient meat
adulteration detection. Fortunately, we are inspired by the fact
that spectral reconstruction (SR) technology can recover fine-
grained spectral resolution and extend spectral covering range
of limited spectral measurements, such as RGB or multi-
spectral images [16], [17], [18], [19], [20]. This technology
presents an opportunity to extend the capability of a low-cost
multispectral camera to meet the requirements for ubiquitous
meat adulteration detection.

However, applying spectral reconstruction algorithms to
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develop a low-cost meat adulteration detection system is not
a trivial task. It faces the following challenges: (1) High Sim-
ilarity of Multispectral Images. The resemblance between
authentic and adulterated samples, especially those with low
adulterant concentration, yields analogous spectral attributes,
complicating adulteration detection. The low-cost multispec-
tral camera worsens the problem due to its coarse-grained
spectral resolution. However, existing spectral reconstruction
algorithms cannot reconstruct distinguishable results between
two samples sharing similar or even the same multispectral
characteristics. (2) Full-Band Reconstruction Error. Since
the spectral absorption characteristics of different adulteration
types span across diverse wavelengths, it is essential for the
system to cover a sufficiently broad spectral range, usually
400-1000nm [10], [11]. However, no low-cost multispectral
devices can cover such a wide wavelength range. When ap-
plying existing spectral reconstruction algorithm for full-band
(i.e., 400-1000nm) reconstruction, the errors and noises in
reconstructed data will hinder its usability for adulteration de-
tection. (3) Lack Spectral Reconstruction Dataset. Spectral
reconstruction algorithms require paired (multispectral images,
hyperspectral images) data for training. However, obtaining
exactly the paired data is challenging. As the field-of-view
(FOV) and focal length of the spectral cameras are different, to
cover the same scene, the system should be used at a specific
fixed distance and angle, which is impractical to implement
physically. Previous methods use opened hyperspectral images
(HSI) dataset and subsampled HSI as paired multispectral
images (MSI) for training, but this approach can result in
different distributions of training and test data, leading to
reduced performance during deployment.

To overcome the above challenges, we present MeatSpec,
the first consumer-grade spectral imaging system for ubiqui-
tous meat adulteration inspection. Specifically, MeatSpec can
distinguish between six common types of adulteration, such
as substitution, veterinary drug residues, and additives, and
use one of the most common targets in meat adulteration
cases, i.e., beef, as authentic samples [21]. MeatSpec solves
the above challenges with the following designs. Firstly,
we propose an application-oriented spectral reconstruction
(AOSR) module to restore more distinguishable reconstructed
images for the cost-effective multispectral input. Specifically,
AOSR involves adulteration related prior information during
the SR training phase and incorporates contrastive learning that
enlarges the distances among reconstructed samples belonging
to various adulteration types (see § III-A). Secondly, to
suppress noise and error in full-band reconstructed spectra
and extract adulteration-related features, MeatSpec proposes
a reconstruction-adapted adulteration detection (RAAD) mod-
ule. RAAD designs distinct feature extractors for different
bands according to the error distribution characteristics of the
reconstructed spectra, and employs knowledge distillation to
align extracted features with the original HSI’s features in
the latent feature space (see § III-B). Moreover, we extend
our system to MeatSpec-G to generalize to dynamic adulter-
ation conditions (see § III-C). Thirdly, we collect a dataset
comprising 347 paired reconstruction training data through
our designed pre-processing pipeline. The pipeline involves

several steps to ensure that the MSI and HSI data are aligned
and addresses challenges posed by ambient light influence,
resolution differences, and variations in sample location during
data collection (see § III-D).

We implement a fully-functional prototype of MeatSpec at a
cost of less than $60. We demonstrate the system’s capability
in detecting minced beef adulteration. Six common types of
adulteration, namely substitution, dye substitution, low-quality
meat, water injection, edible additives, and toxic additives are
considered. For each type of adulteration, we select various
typical adulterants, resulting in a total of 13 different adulter-
ants. Results show MeatSpec achieves a 91.06% accuracy in
detecting multiple adulteration types, merely 7.78% inferior
to the expensive professional solution, yet 21.58% superior to
the baseline at the same price point, demonstrating the effec-
tiveness of the system design. We also verify that MeatSpec
is robust to various environmental setups, such as meat size,
placement and ambient illumination, and the extended system
MeatSpec-G is highly generalizable to dynamic adulteration
conditions, such as varied concentrations, admixture patterns
or totally unseen adulterants.

In summary, we make the following contributions:
• We develop MeatSpec, the first consumer-grade meat adul-

teration detection system that can accurately distinguish
authentic meat and identify the types of adulteration.

• We propose a novel spectral reconstruction scheme and
a classification model that fit the reconstructed spectral
images, enhancing the accuracy and reliability of meat
adulteration detection.

• We open the dataset [22] of beef adulteration detection with
347 paired HSI and MSI data for 13 different adulterants
and design a pipeline for aligning spectral reconstruction
training data.

• Experimental results demonstrate MeatSpec’s high accuracy
in detecting various adulteration types and robustness under
various experimental and environmental setups.
Compared to the MobiCom conference version [23], we

extend MeatSpec to improve its generalizability to dynamic
adulteration conditions. In section II, we introduce the gen-
eralizability limitation and challenges of previous MeatSpec
model, when facing (1) the varied adulteration conditions of
known adulterants, e.g., different concentrations and admixture
patterns and (2) the totally unknown adulterants. In section III,
we first propose a feature alignment-based training scheme
to reduce the feature gap among diverse adulteration con-
ditions, guiding the model to focus on their shared spectral
absorption peaks inherent to known adulterants, instead of
adulteration condition-dependent noises. Then, we propose
a cascaded open-set recognition framework that first detects
statistical divergence from training data, then precisely eval-
uates feature-space positioning to reliably distinguish known
from unknown adulteration types, addressing the limitations
of softmax confidence in detecting distribution shifts and
reconstruction artifacts. These two modules form the core con-
tributions of our extended system MeatSpec-G. In section V,
we evaluate the generalization performance of MeatSpec-G on
varied adulteration conditions and unknown adulterants. The
experimental results demonstrate our methods’ effectiveness.
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Fig. 1. Various spectral imaging processes of the same meat sample.

Finally, we discuss the future directions for MeatSpec-G’s
practical application in Section VII.

II. BACKGROUND AND CHALLENGES

A. Background

1) Meat Adulteration Detection with Spectroscopy: Spec-
troscopy is a valuable technique for analyzing various prop-
erties of substances, including composition, structure, and
concentration [24]. In the context of meat adulteration, the
chemical profile, such as fatty acid and myoglobin, of each
meat species is unique, varying in type and quantity across
different tissues [11], [10], [25].

Figure 1 illustrates two typical spectral imaging system, i.e.,
HSI and MSI, scanning the same meat sample. In principle, a
spectral image can be formulated as:

Ic(x, y, w) = R(x, y, w)Ec(w)Sc(w), (1)

where R(x, y, w) is the spectral reflectance of the object,
x, y and w are the width, height and wavelength channel
respectively. The spectral reflectance is the key attribute for
identifying substances. Ec(w) is the illumination spectrum,
and Sc(w) denotes the spectral response function, both deter-
mined by the hardware parameters of the spectrum acquisition
system. Typically, the MSI systems tend to cover small range
and have few number of filters than HSI systems due to
the cost and size limitation [26], [15]. In contrast, hyper-
spectral imaging devices are always too expensive, costing
over $10,000, limiting their accessibility to the majority of
users [27].

2) Spectral Reconstruction: Spectral reconstruction (SR)
aims to recover the hyperspectral image (HSI) using a re-
duced set of measurements or observations, such as MSI,
RGB images, or compressed hyperspectral data. The rationale
behind hyperspectral reconstruction is based on three key
characteristics.

• Inherent Redundancy. Neighboring spectral bands in HSI
often exhibit high correlation, allowing for leveraging infor-
mation from adjacent bands to estimate the spectral content
of missing or unobserved bands.

• Sparsity. HSI tends to demonstrate sparsity in both the
spectral and spatial domains, allowing for exploiting this
sparsity to reconstruct the full hyperspectral image from a
reduced set of measurements.

Fig. 2. Illustration of how low-cost MSI imaging MSI imaging makes it
harder to tell similar samples apart.

TABLE I
COMPARISON OF THE CROSS-TYPE VARIANCES (EUCLIDEAN DISTANCES)
AMONG RAW SPECTRA, MSI SPECTRA, AND RECONSTRUCTED SPECTRA

USING SOTA SR.

Data Cross-type Variances
Raw Spectra 0.1951
MSI Spectra 0.1805
Recon (SOTA) 0.1764
MeatSpec 0.2311

• Spectral Mixing. HSI can be represented as a linear or
nonlinear combination of a limited number of spectral
signatures, further facilitating the reconstruction process.
In this way, we can offer a promising solution to overcome

the cost barrier associated with acquiring HSI for meat adulter-
ation detection. Currently, lots of deep learning reconstruction
algorithms have been proposed and shown good performance
in RGB image reconstruction tasks [16], [18], [28], [29].

B. Challenges

However, the application of these state-of-the-art (SOTA)
SR algorithms for meat adulteration detection may face chal-
lenges when it comes to reconstructing accurate spectra for
similar substances. We conduct comparison experiments using
a SOTA spectral reconstruction algorithm, named AWAN [16]
to illustrate the problems.

(1) High Similarity of Multispectral Images. As we
mentioned before, the similarity in composition (e.g., fatty and
myoglobin) between adulterated and authentic meat samples
is the main challenge in the detection of meat adulteration [6].
The use of low-cost multispectral cameras exacerbates the
challenge. As shown in Figure 2, when using a low-cost
multispectral device to capture spectral images of similar
samples C1 and C2, the camera can only capture a limited
number of spectral bands, resulting in coarse-grained spectra
lacking detailed information. Within these limited spectral
bands, the MSI spectra of authentic meat and adulterated
samples may look further similar or even identical.

Unfortunately, previous SR algorithms can not solve this
problem. The rationale of the spectral reconstruction is to
learn a one-to-one mapping from paired (MSI, HSI) for the
same scene. Therefore, for two different HSIs sharing similar
or even the same MSI, the SR algorithm can hardly restore
the subtle differences present in the original HSIs, mak-
ing the reconstructed spectra difficult to distinguish between
adulterated and authentic meat. Table I shows the Euclidean
distances between different adulteration classes of original
HSIs, cost-effective MSIs, and spectral images reconstructed
using the existing SOTA SR algorithm in our meat adulteration
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Fig. 3. (a) Reconstruction error of average spectra after SNV. Each color
corresponds to one sample. (b) Comparison of the cross-type variances
between the original HSI and reconstructed HSI in the visible and near infrared
bands.

TABLE II
COMPARISON OF RECONSTRUCTION ERROR BETWEEN SIMULATED MSI

AND REAL MSI USING MODEL TRAINED ON SIMULATED MSI DATA.

Data RMSE MRAE
Simulated Test MSI 0.0095 0.0234
Real Test MSI 106.71 268.52

dataset [22]. We can find that low-cost MSI imaging and
the existing SR algorithm both narrow the distance between
different types of adulterated samples.

(2) Full-Band Reconstruction Error. Since the spectral
absorption characteristics of different adulteration types span
across diverse wavelengths, it is essential for the system to
cover a sufficiently broad spectral range, i.e., 400-1000nm.
Thus, we conduct full-band spectral reconstruction and utilize
the reconstructed HSI data for adulteration detection. However,
most previous models for meat adulteration detection utilize
the pure HSI data as input [11], [30], rather than constructed
HSI. Accordingly, these models do not consider the following
characteristics of reconstructed HSI data. First, due to the
reconstruction error, reconstructed HSI exists more spectral-
spatial noises and useless information than pure HSI. Second,
since our MSI data does not cover the visible band, it’s hard to
accurately reconstruct hyperspectral images in the visible band
(see Figure 3(a)). These errors and noises in the reconstructed
data will hinder its usability for adulteration detection. Thus,
previous models cannot directly adapt to our reconstructed
HSI data and will perform bad. Moreover, we observe that the
reconstructed spectra has large cross-type variances inside the
visible band (see Figure 3(b)), which differs from the original
HSI.

(3) Lack Spectral Reconstruction Dataset. In principle,
the spectral reconstruction algorithm needs to obtain paired
MSIs and HSIs under the same scene, i.e., having the same
R(x, y, w). However, obtaining exactly the same R(x, y, w)
using the two systems is challenging. As the field-of-view
(FOV) and focal length of the two systems are different, to
cover the same scene, the system should be used at a specific
fixed distance and angle, which is impractical to implement
physically. The previous reconstruction works utilize known
response curves of RGB cameras to simulate training RGB
data from HSI [16], [31]. However, there is no open response
curves library of MSI devices and we can not access the
response curve of an off-the-shelf MSI device. We simulate
several response curves using the Gaussian distribution as
referred to [32]. However, simulation can not restore the MSI
data acquisition process, such as MSI detector response, dark
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Fig. 4. (a) Spectra under diverse adulteration concentrations. (b) Spectra under
diverse admixture patterns.

TABLE III
COMPARISON OF THE FEATURE SIMILARITY (COSINE SIMILARITY)

BETWEEN KNOWN AND UNKNOWN ADULTERATION CONDITIONS OF THE
SAME ADULTERANTS, USING MEATSPEC AND MEATSPEC-G.

Solution Concentrations Admixture Patterns
MeatSpec 0.4158 0.5638
MeatSpec-G 0.6515 0.8101

current noise, etc., resulting in different distribution of training
data and test data. As shown in Table II, model training on
simulated data significantly reduce reconstruction performance
during actual deployment.

(4) Generalization Gap in Dynamic Adulteration Sce-
narios. In addition to the challenges brought by the similarity
between adulterated categories and pure meat samples, various
complex adulteration situations in the real world also pose
significant challenges to model design as follows.

• Varied Adulteration Conditions of the Same Adulterants,
including different adulteration concentrations and admix-
ture patterns. As shown in Figure 4, the concentration
change of the adulterate brings about a nonlinear spectral
shift, and the change of multi-adulterant admixture patterns
leads to diverse combinations of absorption peaks in the
spectra. These spectral gaps lead to low feature similarity
of varied adulteration conditions of the same adulterants,
using the previous classification models. This low feature
similarity makes it hard to precisely classify a sample with
an unknown adulteration condition, even if its adulterants
are known in the training samples. From Table III, we can
find that for the known same-type adulterants, the sample
features extracted by the previous classification model in
our MobiCom version [23], have a low cosine similarity of
less than 0.6 on average when the adulteration concentra-
tions or admixture patterns change. This greatly limits the
generalizability of our system in practical usage.

• Unknown Adulterants. Current approaches, including our
original design (the previous classification model in our
MobiCom version [23]), operate effectively only within a
closed set of pre-defined adulterant categories, but lack the
ability to reliably identify samples adulterated with entirely
new substances as “unknown” threats, nor can they generate
reliable uncertainty estimates. This poses a serious safety
risk, as truly harmful novel adulterants may be misclassified
into known categories with high confidence. Furthermore,
this limitation is exacerbated by the spectral reconstruction
process. Driven by the distribution of the training data,
the reconstruction algorithm inherently exhibits a smoothing
effect, tending to generate spectra that are very similar to the

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3623473

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on November 09,2025 at 04:39:04 UTC from IEEE Xplore.  Restrictions apply. 



Known
Adulterants

Unknown
Adulterants

0.80

0.85

0.90

0.95

1.00
So

ftm
ax

 P
ro

ba
bi

lit
y

0.9808

0.9271

max_prob

0.5 1.0 1.5 2.0
Log10(Euclidean)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

D
en

si
ty

Known
Unknown

Fig. 5. Left: Average softmax probability of previous classification model on
known adulterants (13 types) and unknown adulterants (starch and gelatin).
Right: Euclidean distance distribution of known samples and unknowns
samples to the class centers.

nearest known profile spectra when dealing with unknown
adulterants. This hallucinatory reconstruction masks unique
spectral features in the reconstructed spectra, making it
difficult for downstream classifiers to distinguish new sam-
ples, especially when relying solely on confidence thresh-
olds. As shown in Figure 5, the softmax probability of
unknown samples demonstrates similarly high confidence
scores to known samples, while the Euclidean distance
between unknown samples and known class centers exhibits
substantial overlap with the distribution of known samples,
indicating significant challenges in distinguishing unknown
samples. The dual challenges of the closed-set classification
paradigm and the distortion of the feature space caused by
reconstruction pose a significant obstacle to generalization
capabilities.

III. SYSTEM DESIGN

Figure 6 shows the architecture of our system. The final
target of MeatSpec is to restore as much as possible useful
information from collected low-quality data to enable accurate
meat adulteration detection. In this way, MeatSpec incorpo-
rates two modules: application-oriented spectral reconstruction
(AOSR in § III-A) and reconstruction adapted adulteration
detection (RAAD in § III-B) to process the data collected
from cost-effective MSI hardware. We further enhance the
generalizability of MeatSpec to dynamic adulteration condi-
tions in § III-C. In addition, we design a novel pipeline to
align paired (MSI, HSI) data for model training and collect a
dataset comprising 347 paired spectral reconstruction training
data (see § III-D).

A. Application-oriented Spectral Reconstruction

To address the challenge of high similarity, we need to
modify the existing SR algorithm to enable it to capture the
subtle differences among similar MSI spectra of different meat
categories. To this end, MeatSpec proposes an application-
oriented spectral reconstruction model, which introduces ap-
plication related prior information during the training phase
and incorporates contrastive learning to enlarge the distances
among reconstructed samples that share similar MSIs inputs.
By this approach, the reconstructed spectra can be better
discriminated among different categories of meat samples,
enhancing the accuracy and reliability of meat adulteration
detection. Figure 7 illustrates the structure of our proposed
AOSR model. As we can see, the objective of the model

consists of two parts: Lh is the reconstruction loss between
the reconstructed spectra and ground truth spectra for the
same sample, and Lc denotes the contrastive loss of the
reconstructed spectra among different categories. Two losses
are weighted by α to adjust the balance between different
learning objectives.

Base Reconstruction Model. We first leverage a SOTA
spectral reconstruction algorithm [16] as the backbone of
our AOSR model to reconstruct the hyperspectral image
R̂(x, y, w) for the MSI input M(x, y, w0). The purpose of
using SR backbone is two-fold, increasing the spectral resolu-
tion and extending the spectral coverage. Therefore, R̂(x, y, w)
will have a wider covering range and more number of bands
than M(x, y, w0) to support meat adulteration detection. We
make some simple modifications on [16] to fit our MSI
reconstruction task. Firstly, as [16] takes RGB images instead
of MSI as input, we modify its input and output size to
fit our dataset. Then, since we utilize an off-the-shelf MSI
camera, which can not access its camera spectral sensitivity
(CSS) parameters, we remove the CSS loss in [16]. After
modification, the reconstruction loss of our base model is
defined as:

Lh =
1

M

M∑
i=1

|R̂i −Ri|
Ri

, (2)

where M is the total number of pixels, R̂i and Ri denote the
reconstructed and original spectrum of the i-th pixel for the
sample. By minimizing the loss Lh, the model can narrow the
distance between the reconstructed HSI and real HSI.

Contrast-based Reconstruction. After finishing basic re-
construction, we then introduce meat adulteration prior in-
formation and exploit contrastive learning into the training
phases. Our goal is to enable the model to distinguish between
different classes of samples that share similar or the same
multispectral features. In light of this, we construct contrastive
loss that maximizes the distance of reconstructed HSI among
different categories. We use Euclidean distance to measure
the distance of the reconstructed HSI between two samples.
We then use the introduced adulteration prior information
to screen negative samples for each sample. The negative
samples are defined as the samples from the categories that
are different from the target within one batch. Our contrastive
loss is calculated as follows:

Lc = − 1

B

B∑
b−=1,b− ̸=b

1(yb ̸= yb−)

√√√√ 1

M

M∑
i=1

∥R̂i
b − R̂i

b−∥2,

(3)
where B is the batch size. R̂i

b and R̂i
b− are the i-th recon-

structed pixel of sample b and sample b−. yb and yb− are the
category label of sample b and b−. The function indicates that
we only maximize the distance between the target sample b
and the others having different categories within the batch.
As a result, contrastive learning enables the reconstruction
algorithm to have better distinguishing capability. As depicted
in Table I, by using our design, the Euclidean distances
between different adulteration classes of reconstructed HSIs
improve from 0.1764 to 0.2311. Further evaluation of the
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effectiveness of our designed AOSR module is discussed
in § V-C1.

B. Reconstruction-adapted Adulteration Detection

1) Reconstruction Data Refinement: To combat the noise
and redundant information induced during spectral reconstruc-
tion, we consider to refine the reconstructed data as follows.
First, we divide each reconstructed hyperspectral image into
40×40 patches and conduct average pooling on each patch to
reduce the spatial-wise redundant information and accelerate
the training process. Next, for spectral-wise denoising, we
utilize a mean filter with a window size of 3 to smooth the
spectra at each pixel. Then, we apply the common spectral
preprocessing method namely standard normalized variate
(SNV) on each pixel’s spectra to reduce the scattering effect.
After these operations, each processed HSI cube with 40×40
pixels and 138 channels will be inputted into our designed
CNN classifier below.

2) Reconstruction-adapted CNN Model: As shown in Fig-
ure 8, our adulteration detection model contains three parts:
base model, feature distillation and visible information extrac-
tion, based on the characteristics of reconstructed data.

Base Model Design. Our base model leverages the refined
HSI data (40×40×138) as input, which adopts three 2D
convolutional layers, three batch normalization (BN) layers,
three pooling layers and one fully connected (FC) layer.
Considering the large noise of reconstructed HSI, the first
convolution layer conducts down-sampling to reduce the effect
of noise and redundant information. Meanwhile, it does not
reduce the spectral-wise dimension, which instead assigns each
channel a weight for better feature extraction. Besides, to
further avoid overfitting by reconstruction noise, a BN layer
and maximum pooling are added after the first convolutional
layer. These three layers act as a special denoising module
for reconstructed HSI. Then, the output will be inputted to
the second convolution layer where we leverage a larger
kernel size to extract more global information, because the
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Fig. 8. Model design of reconstruction-adapted adulteration detection.

reconstructed spatial texture may contain incorrect noise and
lead to overfitting. So we pay more attention to the global
information and spectral dimension. The third convolution
layer has the same setting as the second one, which further
extracts more fine-grained features. After average pooling to
remove the spatial dimension, we can obtain a 32-length
embedding, denoted by Fs.

Feature Distillation. As shown in Figure 3(a), it’s hard to
accurately reconstruct the visible band. But, since the spectral
absorption characteristics of different adulteration types are
distributed in different bands, we need to utilize the full-
band information of the original HSI for effective adulteration
detection. To achieve this, we decide to exploit the feature
distillation approach. By guiding the feature extractor of
reconstructed HSI with that of original HSI, we can transfer
the useful knowledge of full band, especially the visible band,
for better adulteration detection. Specifically, we regard the
base model as the student model and add a branch of teacher
model with the original HSI as input. Since the original HSI
has little noise, we can reduce its spatial dimension to 20×20
pixels after SNV to further accelerate the training. Meanwhile,
the teacher model only needs to use two convolutional layers
with smaller kernel sizes than that of the student model,
and the corresponding BN layers and pooling layers. After
training the teacher model, we freeze its model parameters
and extract the 32-length embedding before FC layer as the
teacher feature, denoted by Ft. Then, we minimize the gap
between the extracted features of the student model (Fs) and
the frozen teacher model (Ft) for feature distillation.

Visible Information Aid. Though the visible band is hard
to reconstruct, contrastive learning itself can bring some new
information inside the reconstructed visible band, due to the
usage of negative samples. Figure 3(b) demonstrates that the
reconstructed visible band has more information to distinguish
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Fig. 9. Feature alignment for enhancing RAAD model generaliability.
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Fig. 10. T-SNE feature distributions of the same adulterants (substitute
meat) with varied adulterantion conditions, using MeatSpec and MeatSpec-G
classification models.

diverse categories than the original visible band. This addi-
tional information may help enhance the classification perfor-
mance. Therefore, we add a branch in our model to extract the
additional feature inside the visible band of reconstructed HSI
(i.e., the first 66 channels). We extract an 8-length embedding,
denoted by Fv , and concatenate it with our distilled feature.
Finally, a formed 40-length feature is fed to the FC layer for
classification.

Weighted Loss. Eventually, the overall loss function for our
CNN model consists of a distillation loss Lkd and a weighted
cross-entropy (WCE) loss Lwce as:

L = β · Lkd + (1− β) · Lwce (4)

where β is the weight to trade off the strength of feature
distillation for different objects. Note that we define a novel
weighted cross-entropy loss for our classification task. We
observe that different adulteration types have different degrees
of reconstruction error. Larger errors may cause greater dif-
ficulty to distinguish. Therefore, we compute the average re-
construction error of each adulteration type as its class weight,
which is used in cross-entropy loss for better classification
performance:

Lwce = − log(Pc)
1

Nc

Nc∑
i=1

∆Ri (5)

where Nc denotes the sample number of the c-th adulteration
type, ∆Ri denotes the average reconstruction error of i-th
sample and Pc denotes the classification probability to c-th
class. In this way, the classification model will pay more
attention to those classes with poor reconstruction perfor-
mance. Besides, for the feature distillation, we use MSE
loss as the distillation loss to measure the gap distance
between the extracted student features and teacher feature,
i.e., Lkd = 1

NF
||Ft − Fs||2, where NF is 32. The distillation

loss is jointly used with cross-entropy loss during training,
which ensures the distillation trend towards high classification
accuracy. The effectiveness of our designed RAAD module is
evaluated in § V-C2.

C. Generalization to Dynamic Adulteration Conditions

To bridge the generalization gap to dynamic adulteration
conditions, we enhance the detection framework with two
novel components that explicitly address dynamic adulteration
scenarios. These extensions integrate seamlessly with our
core RAAD module while introducing targeted mechanisms
for varied adulteration conditions recognition and unknown
adulterants identification.

1) Feature Alignment for Varied Adulteration Conditions
of Known Adulterants: To address the challenge of gener-
alization gap incurred by low feature similarity of varied
adulteration conditions, e.g., different admixture patterns and
concentrations, we need to conduct feature alignment to reduce
the feature gaps among diverse adulteration conditions of the
same adulterants, during model training. The rationale is that,
despite the admixture patterns or concentrations are unknown,
the spectral absorption peaks of the same adulterants have been
seen inside the training samples. By minimizing the feature
gap between samples of minimum and maximum concentra-
tions, and that between samples of lowest and highest admix-
ture complexity - which are distinct feature clusters under the
classification model in RAAD module (see Figure 10(a)) -
the model’s output features will be focused on shared spectral
absorption peaks inherent to adulterants themselves, instead
of adulteration condition-dependent noises. The reason for
choosing samples of minimum-maximum concentrations and
lowest-highest admixture complexity, is due to these samples’
largest feature gap under all combinations of the spectral
absorption peaks. Through this feature alignment approach, the
model generalizability to varied unknown adulteration condi-
tions will be much improved, with closer feature clusters and
larger feature similarity (see Figure 10(b)). Moreover, we add
channel attention weights to the reconstructed data to highlight
the shared absorption peaks, further enhancing the alignment
performance and preventing overfitting. Figure 9 illustrates the
structure of our feature alignment scheme. As we can see,
besides the loss L proposed in RADD module (§ III-B),
the training objective of the enhanced classification model
also contains the feature alignment loss Lfa, which denotes
the feature gaps among diverse adulteration conditions, with
channel-weighted reconstructed HSI as inputs.

Feature Alignment. We employ the Cosine similarity to
measure the gaps among different samples’ features (i.e., Fs

in § III-B). For each adulterant, let Smin denote the set
of samples of minimum concentration and lowest admixture
complexity, Smax denote the set of samples of maximum
concentration and highest admixture complexity, we try to
optimize the model to make the output features of samples
in Smin and Smax as close as possible. That is,

Lfa =
1

Ns

∑
i∈Smin

∑
j∈Smax

(1− Fi · Fj

||Fi|| × ||Fj ||
) (6)

where Ns = |Smin|×|Smax| denotes the combination quan-
tity and Fi is i-th sample’s feature. Smaller Lfa means larger
feature similarity. The sets Smin and Smax are obtained
within a batch during training.
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Enhanced Loss. As mentioned, we add a 138-length train-
able vector as channel attention weights to the reconstructed
HSI (R̂), and use this weighted HSI (ρR̂) as CNN model
inputs. Thus, combined with the RAAD loss L , the overall
loss function for training a generalized CNN model finally is

L ′ = γ · Lfa(F (ρR̂)) + L (ρR̂) (7)

where γ is the weight to balance the feature alignment’s
strength against overfitting. The feature alignment loss is
jointed minimized to make the model converge to a parameter
space with high generalizability. The initial values of channel
attention weights are uniformly set to one for joint training.

As shown in Fig 10, we conduct a field study of diverse
adulteration concentrations, where “Known-C1” means sam-
ple features of 10% concentrations and “Known-C2” means
sample features of 50% concentrations - both of them are
known concentrations in the training samples. After reducing
their feature distances using our method, the test sample
features of 20% and 40% new concentrations denoted by
“Unknown”, will evidently approach more closer to the sample
features of known concentrations (10% and 50%). This feature
distribution change between 10(a) and 10(b) shows the effec-
tiveness of conducting feature alignment for generalizability
improvement. The comprehensive evaluation of this feature
alignment module will be presented in § V-E1.

2) Hierarchical Detection System for Unknown Adulter-
ants: Detecting new, unseen adulterants presents distinct chal-
lenges from generalizing to known contaminants at different
concentrations or mixtures. While we enhances the capability
of known adulterant distributions through feature alignment, it
is still inherently limited to closed-set recognition. To this end,
we design a cascaded open-set recognition framework which
decouple the challenges of quantifying distribution uncertainty
and discriminating anomalies in feature space. This decoupling
is critical because softmax confidence fails to reliably capture
distributional shifts, while reconstruction artifacts corrupt the
very features needed to discern novelty. By first identifying
samples exhibiting statistical divergence from training data
(Stage 1) and then rigorously evaluating their position relative
to known class distributions in a robust feature space (Stage 2),
our framework can establish a clear boundary between known
and unknown adulteration types.

Distributional Uncertainty Quantification. In the first
stage, we implement an energy-based detector operating di-
rectly on RAAD’s pre-softmax logits. The energy function is
formulated as:

E(x) = −T · log(
K∑
i=1

exp(fi(x)/T )), (8)

where fi(x) denotes the logit value for class i, and T is a
temperature parameter scaling score sensitivity. This energy
score is negatively correlated with the real data density p(x).
Therefore, low energy indicates high likelihood under the
training distribution (i.e., known categories), while high energy
indicates statistical divergence. Unlike softmax probability that
is a relative metric that limits the sum to 1, energy can capture
absolute model uncertainty and exposes distribution changes
caused by new adulterants.

Feature-Space Anomaly Discrimination. In the second
stage, we employ a class-conditional Mahalanobis discrimina-
tor operating in RAAD’s teacher-model feature space (F (t))
to resolve the critical challenge of reconstruction-induced
spectral ambiguity. We deliberately select this space because
it maps directly from ground-truth HSI data, thereby avoiding
the smoothing distortions inherent in the student pathway’s
reconstructed features. Specifically, for each known class
c ∈ {0, 1, ..K − 1}, we compute a class-specific mean µc

as the expectation over training features zt and a regularized
covariance matrix Σc, which is formulated as:

Σc =
1

Nc − 1

∑
i:yi=c

(z
(i)
t − µc)(z

(i)
t − µc)

⊤ + λI, (9)

with λ = 10−6, to ensure numerical stability and invertibility
while preserving class-specific distribution characteristics. For
a candidate feature vector zt derived from the first stage’s
potential ambiguous (i.e., E(x)<τenergy), we compute its
Mahalanobis distance to all known classes as:

MDc(zt) = (zt − µc)
⊤Σ−1

c (zt − µc), (10)

where we omit the square root calculation to optimize in-
ference speed without compromising discriminative power.
subsequently, we define the smallest Mahalanobis distance as
the anomaly score of the sample, i.e., OOD Score(zt) =
minMDc(zt). Samples are conclusively classified as un-
known adulterants if OOD Score(zt) exceeds the threshold
τmah.

The core innovation of this design lies in its intrinsic resis-
tance to spectral reconstruction artifacts. First, Mahalanobis
distance exhibits strict affine invariance, where any linear dis-
tortion ϕ(z) = Az + b approximating reconstruction-induced
warping preserves the metric, guaranteeing consistent novelty
detection even when features are projected toward known-class
spaces. Second, the covariance term Σ−1

c amplifies deviations
orthogonal to dominant feature correlations to expose latent
statistical incompatibilities that spectral smoothing attempts
to erase. For instance, when a novel adulterant’s spectrum is
distorted to align with known absorption peaks along primary
eigenvectors, residual discrepancies in low-variance directions
trigger anomalously high Mahalanobis scores. Thus, by in-
tegrating this covariance-aware discriminator with RAAD’s
existing architecture, which requires zero additional trainable
parameters, we transform the reconstruction pipeline’s spectral
homogenization weakness into a discriminative strength. The
thresholds τenergy and τmah are jointly calibrated via ROC
analysis on validation data, optimizing the trade-off between
known-class retention and unknown detection sensitivity. By
seamlessly integrating open-set capability into RAAD’s ex-
isting feature extractor, our solution closes the critical gap
between high-fidelity spectral reconstruction and robust un-
known threat identification. The effectiveness of this design is
evaluated in § V-E2.

During practical usage, MeatSpec-G will first recog-
nize known and unknown adulterants with this framework
(§ III-C2) and then employ our enhanced models with feature
alignment (§ III-C1) to detect the adulteration types under
diverse real-world conditions.
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TABLE IV
ADULTERANTS AND THEIR CONCENTRATIONS IN OUR COLLECTED

DATASET. SIX COMMON TYPES OF ADULTERATION AND 13 DIFFERENT
ADULTERANTS WITH EACH CONTAINING TWO CONCENTRATIONS ARE

CONSIDERED.

Types Adulterants Concentration

Substitute
Pork

Chicken
Duck

10%, 50%
10%, 50%
10%, 50%

Dye Substitute
(Color & Essence)

Pork
Chicken

Duck

10%, 50%
10%, 50%
10%, 50%

Low Quality Beef Offal
Stale Beef

10%, 50%
10%, 50%

Edible Additive Vegetable Protein 5%, 20%
Water Injected Water 5%, 20%

Toxic Additive
Antibiotic
Stimulant

Preservative

(0.75, 3) ug/kg
(0.3, 1.2) ug/kg

(0.15, 0.6) mg/kg

D. Meat Spectral Reconstruction Dataset Development

To achieve an effective data alignment, we design a pre-
processing pipeline through image processing algorithms. The
pipeline involves four steps to ensure that the MSI and HSI
data are aligned and addresses challenges posed by ambient
light influence, resolution differences, and variations in sample
location during data collection. (1) Elimination of Ambient
Light. In real-world scenarios, the uncontrollable intensity
of environmental illumination may hinder learning a reliable
reconstruction mapping. To overcome this, we apply back-
ground subtraction by removing the spectral image illuminated
solely by ambient light. This eliminates the environmental
illumination and improves the accuracy of subsequent analysis.
(2) Median Filtering and ROI Extraction. To enhance the
quality of the selected images, we employ median filtering to
reduce noise. Additionally, for meat samples placed in circular
petri dishes, we utilize the Hough Circle Transform [33] to ex-
tract the regions of interest (ROI). To achieve angle alignment
of the extracted ROIs, we stick a black circular marker on
each petri dish and rotate ROIs so that the marker centers are
aligned. This approach compensates for variations in sample
location and ensures accurate analysis. (3) Spatial Alignment.
After cropping the images, we observe a resolution difference
between the MSI and HSI images. To address this, we down-
sample the larger image using nearest neighbor interpolation,
ensuring they have the same size. Then by aligning the marker
and meat centers along a vertical line, we eliminate misalign-
ment and ensure accurate correspondence between MSI and
HSI pairs. (4) Central Area Extraction. To focus on the
most informative regions, we extract central areas of 320×320
pixels from the aligned MSI and HSI cubes. This enables
efficient analysis and reduces computational complexity while
preserving essential information for further processing.

Based on this pre-processing pipeline, we collect a spectral
reconstruction dataset for minced beef adulteration inspection.
Table IV illustrates the adulteration types in our dataset.
Based on the survey of various types of adulteration and their
frequency in developing countries [21] and their harmfulness,
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Fig. 11. Prototype of MeatSpec, which cost <$60. Users can finish adulter-
ation detection by simply placing the meat sample at the top of the box.

we define six common types of adulteration. For each type
of adulteration, we select several typical adulterants, resulting
in a total of 13 different adulterants. Each adulterant is
used at two concentrations, including a minimum adulteration
concentration and a typical adulteration concentration1. The
concentrations are set with reference to various surveys and
standards [34], [35], [36]. We produce three samples for each
adulterant and scan collect four (MSI, HSI) images for each
sample. Overall, a total of 347 paired MSI and HSI images
are collected, which can be accessed in [22].

Furthermore, our dataset can be expanded to include sam-
ples of other adulterated meats for a wider scope of meat
adulteration detection, not limited to beef samples. The AOSR
and RAAD modules do not need any changes.

IV. IMPLEMENTATION

We implement a compact and low-cost prototype using off-
the-shelf multispectral camera (named Monarch [15]) and light
components. As shown in Figure 11, the prototype is a semi-
enclosed 3D printed box using white resin. The multispectral
camera is placed at the bottom of the box with the lens facing
up. Users can finish sample scanning by simply placing the
meat sample at the top of the box. To capture one image, it
takes about 750ms.

Multispectral Camera. Monarch has two advantages over
other commercial multispectral cameras on the market that
prompt us to choose it. First, most low-cost multispectral cam-
eras on the market only cover visible light [26], but Monarch
operates at frequencies ranging from 690nm to 950nm in the
near-infrared band, providing more spectral features relevant
to meat adulteration detection. Second, it’s cheaper, Monarch
uses the novel MEMS spectral imaging chip based on Fabry-
Perot broadband filter to dramatically reduce the cost of
hardware, which costs around $50 for mass production. In
addition, Monarch can report real-time camera temperatures
during image capturing. If long-term operations are needed,
we can calibrate the camera’s MSI wavelengths according
to the linear relationship between wavelength shift of Fabry-
Perot filter and temperature changes [37]. Practically, this
situation rarely happens because our system latency is <1.5
seconds (see §V-B3) with no need for long-time operations. An

1For example, the ”10%, 50%” indicates the 1:9 or 5:5 mass ratio of the
adulterant to the beef. The ”(0.75,3) ug/kg” means that the 0.75 ug/kg or
3 ug/kg concentration additives are prepared and sprayed on the surface of
the beef sample.
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TABLE V
COMPARING THE PARAMETERS OF THE MSI AND HSI CAMERAS USED IN

OUR EXPERIMENT.

Parameters Cubert (HSI) Monarch (MSI)
Spectral Range 450-1000 nm 690-950nm
Spatial Size 1000×1000 pixels 1280×1024 pixels
Band Num 138 10

Wavelength
(nm)

[450:1000::4]
(i.e., 450, 454, 458,

462, ..., 1000)

713, 736, 759,
782, 805, 828, 851,

874, 897, 920
Cost > $10,000 ≈$50

automatic, built-in one-time calibration before image capturing
is enough for practical usage.

Light Source. We need to ensure sufficient light intensity
at the sample to produce clear multispectral images. To this
end, we place 12 full-band tungsten lamps (VCC7216-ND) at
a distance of 10cm from the top of the box. All the lamps are
connected in parallel and powered by a teensy@4.0 develop-
ment board [38]. In addition, To ensure uniform illumination
distribution, as shown in Figure 11 (c), the 12 lamps are
uniformly placed at the the four walls of the box.

Our prototype can support ubiquitous usage due to its low
cost (<$60), portability and generalizability, suitable for end-
of-chain nodes’ scenarios such as school cafeterias, catering
institutions. Despite our system requires illumination and extra
MSI device instead of a smartphone, it can achieve accurate
meat adulteration detection which smartphone’s three-channel
RGB images cannot achieve.

V. PERFORMANCE EVALUATION

A. Study Setup

1) Training Scheme: As mentioned in § III-D, the paired
HSI and MSI in our dataset both have 320×320 pixels after
processing. To train the AOSR model, we split the images into
64×64 patches, with a batch size of 32, an initial learning rate
of 10−4, and a cosine preselection annealing decline to 10−6.
The model converges with a loss function weight (α) of 0.95
after 20000 iterations. To train the RAAD model, we use a
batch size of 64, a distillation weight (β) of 0.8, an initial
learning rate of 5 × 10−4, and cosine preselection annealing
with a rate of 10−6. After training 1000 epochs, to prevent
falling into a local optimum under cosine annealing, we reset
the learning rate to a constant value of 5× 10−5 and continue
training the model with additional 1000 epochs. The RAAD
classification model converges to the final result after 2000
epochs.

2) Metrics: We reformulate the meat adulteration inspec-
tion task into a multi-classification task, which not only should
distinguish the adulterated sample from the authentic sample
but also detect the adulteration types. Multi-classification is
essential because 1) the health risks and responses to different
types of adulteration are completely different, e.g., the risk
of toxic additives is very high and requires prompt medical
attention; 2) for ubiquitous scenarios such as school cafeterias
or catering institutions, it is not only necessary to determine
whether a meat sample is edible but also to trace the source
of adulteration and manage the supply chain according to
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Fig. 12. Stratified 5-fold cross-validation performance comparison between
MeatSpec and baselines.

the specific adulteration types. As depicted in § III-D, we
consider six common types of adulteration. Thus, we have 7
classes in total, including authentic beef (0), substitution (1),
dye substitution (2), low-quality meat (3), edible additives (4),
water injection (5), and toxic additives (6). To evaluate the
performance of meat adulteration multi-classification task, we
exploit the Macro-averaging Accuracy and F1 score as the
metrics.

3) Baselines: We compare our system’s performance with
several baselines. (i) RGB. We use the corresponding RGB
images generated by the captured HSI to conduct the clas-
sification. We build a ResNet [39] network to classify the
generated RGB images. (ii) MSI. We directly use MSI images
for classification. We use random forest and CNN, which are
typically used in previous works [40], to classify the spectra
that averaged in spatial dimension. We choose the better result
from random forest and CNN for this baseline. The first
two baselines are end-to-end deep learning-based detection
without spectral reconstruction. (iii) MSI (SOTA SR). We use
the existing SOTA spectral reconstruction algorithm [16] to
reconstruct the HSI, and then use random forest and CNN
to classify the spectra according to the conventional meth-
ods [40]. Similarly, we choose the higher performance from
random forest and CNN. Due to the cross-band reconstruction
errors, here using CNN tends to model overfitting and the ran-
dom forest’s performance is slightly higher. (iv) HSI. We use
hyperspectral data collected by an expensive HSI camera [27]
for classification, and use our designed CNN classifier. Tabel V
shows more detailed parameters of the HSI camera comparing
with our MSI camera. Note that although the performance of
MeatSpec is supposed to be inferior to this baseline, MeatSpec
far outperforms this solution in terms of price.

B. Overall Performance

We first evaluate MeatSpec’s performance on different adul-
teration type detection by conducting stratified 5-fold cross
validation2, by which the ratio between the target classes is
the same in each fold as it is in the full dataset.

1) Baselines Comparison: Figure 12 compares the accuracy
and F1-score of our MeatSpec with baselines, revealing three
important findings. Firstly, using unmodified MSI or RGB for
adulteration detection results in poor performance, with less
than 70% accuracy, due to their limited and coarse-grained

2Doing stratified cross-validation can ensure that the cross-validation result
is a close approximation of generalization error.
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Fig. 13. Confusion matrix of MeatSpec on multiple meat adulteration types
detection

spectral information. Secondly, applying the existing SOTA
SR algorithm to MSI only slightly improves the system’s
performance, since it fails to recover fine-grained differences
and combat reconstruction errors in reconstructed HSI, leading
to low classification accuracy. Finally, our designed system
achieves 91.06% accuracy for the meat adulteration type detec-
tion task, which is 21.58% higher than that of the direct use of
MSI and 14.95% higher than that of the MSI using the existing
reconstruction algorithm, demonstrating the effectiveness of
the system design.

2) MeatSpec’s Performance: Figure 13 and Figure 14
present the confusion matrix and AUC-ROC curve of Meat-
Spec for detecting multiple meat adulteration types, respec-
tively. We can observe the consistently good performance of
MeatSpec across all adulteration types. Notably, MeatSpec
can accurately distinguish authentic beef samples from adul-
terated samples, achieving an accuracy of 92%, even with
various types of adulteration. Moreover, we conduct two-
dimensional t-distributed stochastic neighbor embedding (t-
SNE) projections [41] to illustrate the embedding represen-
tations of MeatSpec. Figure 15 displays our results, which
indicate that MeatSpec displays clear clustering of all classes,
demonstrating its aptitude for identifying various adulteration
types.

3) System Overhead and Time Latency: We use NVIDIA
T4 Tensor Core GPU to testify our models’ time latency
and overhead. For our AOSR module, the total parameter
number of the reconstruction model is 4.14M with 512.67G
floating-point operations per second (FLOPs). The inference
latency of reconstructing one meat sample’s MSI is 665.4ms
on average. For our RAAD module, its regression model’
total parameter number is 0.92M with 0.376G FLOPs and
1.87ms inference latency on average. Both two modules could
be deployed on the server side for fast inference, where the
latency could be further reduced if more effective GPUs like
A100 are employed. Overall, the full system latency is less
than 1.5 seconds including image capturing, which is low and
acceptable for daily usage.

C. Ablation Study

We then investigate the modules of MeatSpec by conducting
ablation study to demonstrate the effectiveness of the system
design.

1) Effectiveness of Application-oriented Spectral Recon-
struction: From the results shown in Table 16, we can find
that by introducing AOSR scheme, the system improves about
7.76% accuracy than the baseline, which indicates its effective-
ness of gaining more spectral features related to adulteration
types. Specifically, by involving adulteration prior information
and contrastive loss, the distance between the selected sample
and the samples of other adulteration classes is increased, thus
helping the reconstruction model to learn the nuances between
the adulteration samples of different classes.

2) Effectiveness of Reconstruction-adapted Adulteration
Detection: The effectiveness of the RAAD structure is re-
flected in the results of Table 16, which show an accuracy
improvement of 11.25% compared to the baseline. This struc-
ture enhances the model’s recognition ability in two ways.
Firstly, it extracts more information from the visible light
band to compensate for the large reconstruction error of the
reconstructed data. Secondly, by narrowing down the features
of the HSI and reconstructed images, the model learns a
feature space that is more similar to the HSI feature, thereby
improving classification performance.

D. Impacts on Experimental Conditions

We then evaluate MeatSpec under various experimental and
environmental conditions, as shown in Figure 17. We conduct
the experiments using beef and one typical adulteration type,
i.e., substitute. For each experimental condition, we prepare
two authentic samples and two substitute adulteration samples
containing 50% of pork. Each sample is scanned by our pro-
totype back and front twice, thus introducing eight authentic
images and eight adulteration images. Both the reconstruction
model and classification model are trained using all data
collected in normal experimental conditions.

1) Varying Meat Size and Height: Our system is designed
to be flexible, allowing users to vary the amount of meat
used for detection, which can affect the size, shape, and
thickness of the sample. To test our system’s performance,
we create samples of four sizes and five thicknesses. The
results are shown in Figure 18(a)-18(b). We find that the
system is more robust to different sizes than thicknesses. This
is because our system eliminates the influence of ambient light
by collecting a background map before scanning the sample.
While the thickness of the sample can impact the system’s
performance, we find that our system performs well when the
sample thickness is more than 1cm. Since beef patties on the
market are generally 1-2cm thick, our system can handle most
situations with ease.

2) Varying Meat Minced Size: The physical structure of
minced beef with different degrees of grinding is different,
which will affect the reflection and scattering route of light.
Thus, we set the meat grinder to four different mixing times,
which directly decide the degrees of grinding. As can be seen
from Figure 18(c), when the stirring time is less than one
minute, the performance of the system is affected, especially
the performance of the production sample is slightly reduced,
which may be because the adulterants are not evenly mixed
due to insufficient stirring. The spatial distribution of the
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Spec’s result.
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Ablation Models Accuracy F1-Score
MSI (SR) 76.11% 74.11%
MeatSpec (w/o RAAD) 83.87% 81.86%
MeatSpec (w/o AOSR) 87.36% 87.09%
MeatSpec (our) 91.06% 91.50%

Fig. 16. MeatSpec’s performance comparing with ablation models
and different base reconstruction models.
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Fig. 17. Illustration of various experimental conditions.
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Fig. 18. MeatSpec performance under various experimental and environmental conditions.

collected MSI images is quite different from that of the fully
mixed samples in the training set. This problem can be solved
by calibrating the model using coarse-particle samples. While,
when the samples are fully mixed and ground, the system can
achieve good performance.

3) Varying Meat Temperature: The temperature of food
affects its molecular thermal motions, which in turn affects
the diffuse reflection of light. To evaluate MeatSpec under
different food temperatures, we consider four common meat
temperatures. The prepared samples are refrigerated at -18oC
for 8 hours and then thaw in normal temperature. Figure 18(d)
reports the results, which indicate huge influence of temper-
ature on our system. However, upon in-depth analysis of the
classification results, we find that the misidentified samples are
classified as either water-injected or low-quality substitution.
This may be due to the precipitation of a lot of water in the
process of refrigeration and thawing, and too long thawing
time leads to the sample is not fresh. Additionally, the camera
temperature would not affect the detection performance due
to the automatic calibration before image acquisition.
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Fig. 19. MeatSpec performance on generalization to various experimental
setups.

4) Varying Sample Placement: Since our light source does
not illuminate the sample uniformly from the center but from
four sides, the meat samples may be exposed to different inten-
sity light sources when placed at different scanning positions
on the top. To test the robustness of the system to different
positions, we use 6cm samples placed in five different areas
on the top. The results in Figure 18(e) show that our system
is not sensitive to the placement of the samples. This may
be attributed to our background elimination algorithm and the
classification model’s pooling process, which eliminates the
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unevenness of the light field distribution
5) Varying Ambient Illumination: Ambient light can inter-

fere with the readings of the MSI camera, which can negatively
impact the performance of MeatSpec. Thus, we investigate
the performance of MeatSpec under various realistic lighting
conditions. We test the system under four different light
settings. As shown in Figure 18(f), MeatSpec’s performance is
stable under different lighting conditions, as expected. This is
because we place the camera at the bottom of the semi-closed
box, blocking the majority of the ambient light, and utilize the
proper background subtraction method.

6) Varying Authentic Beef Type: Minced beef on the market
may be prepared using different types of beef. We select three
representative beef parts, which are commonly used as raw
materials for making ground beef 3. We select a brand from a
different origin for each part and calibrate the model using
three parts of beef from one of the sources and then test
it on samples from other sources. The results are shown in
Figure 19(a). We can see that after calibration, the model
also has good generalization performance for different parts
of beef. If the users want to extend the model to more beef
parts, only need to collect a small number of new parts of the
sample to calibrate the model.

7) Varying Adulteration Meat Type: The same substitution
class of adulteration may also include different kinds of
substitutions, such as pork adulteration with different parts
of pork. Therefore, taking pork adulteration as an example,
we consider the adulteration of three different parts of pork.
The model is also calibrated using a variety of pork parts, and
Figure 19(b) shows the results on the remaining samples. As
shown in the Figure 19(b), except for leg pork, the model has a
good prediction performance for different parts of adulterated
pork, and leg pork is incorrectly classified as the alternative
category of crying dye, which may be caused by the rich
content of myoglobin in leg pork.

8) Multi-Type Adulteration: . We further evaluate Meat-
Spec’s performance in predicting multiple types of adulterants
simultaneously. We include five two-type mixed cases and two
three-type mixed cases commonly found in real scenarios. The
label of mixed cases included 1-2, 1-3, 1-4, 2-3, 2-4, 1-2-3, and
1-2-4. Each case involves mixing different adulterated samples
with 50% concentration and creating one sample to fine-
tune the classification model and multiple samples for testing.
The model, trained on a single-type dataset, achieved an
86.48% F1-Score, with a 68.85% exact match ratio for multi-
label and a 92.39% accuracy for each instance. These results
demonstrate MeatSpec’s effectiveness in detecting multiple
types of adulterants by distinguishing their unique spectral
characteristics, thanks to MeatSpec’s ability to restore fine-
grained spectral information.

E. Generalizability

We then evaluate the effectiveness of our generalizability
enhancement modules in § III-C.

3https://en.wikipedia.org/wiki/Ground beef
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Fig. 20. MeatSpec-G’s generalization performance on unknown adulteration
conditions, comparing with ablation models and MeatSpec model. Here
“Target” denotes the new samples of varied unknown adulteration conditions
and “Source” denotes the previous samples of known adulteration conditions.
“FA” denotes feature alignment and “CA” denotes channel attention aid.

1) Varying Adulteration Conditions of Known Adulterants:
We evaluate MeatSpec-G under 20%, 30%, 40% concentra-
tions of pork adulterants and pairwise combinations of pork,
chicken and duck as admixture patterns. For each adulteration
condition, we prepare three adulteration samples. To ensure
the training samples contain different admixture patterns for
conducting feature alignment, we also collect five adulteration
samples of triple combinations of pork, chicken and duck, and
add these data into the training set, which already contains
the single-adulterant samples. Then, we retrain the MeatSpec
model with feature alignment loss and obtain the MeatSpec-
G model. As demonstrated in Figure 20, the classification
accuracy of MeatSpec-G can reach 88.89% on unknown
adulteration concentrations and admixture patterns, signifi-
cantly outperforming the MeatSpec model in our conference
version by 27.78%. For the previous MeatSpec model, the
performance gap between known and unknown adulteration
types is around 30% while this gap using MeatSpec-G model
is decreased to only 1.1%. This is benefited from the enhanced
feature similarity among diverse adulteration conditions for
same-type adulterants, through our feature alignment module.
Meanwhile, the accuracy of MeatSpec-G model on previous
known meat samples can still maintain 90%, which demon-
strates that MeatSpec-G model is not overfit with the balance
of multi-task weights. Besides, from Figure 21, we can find
that choosing an appropriate weight γ from 0.1 to 0.3 results
in a satisfied performance, while a larger weight will lead to
overfitting and a smaller weight will lose the effect of feature
alignment, which needs to trade-off. Moreover, according to
the ablation models’ results, we can find that on the basis of
feature alignment, employing channel attention to highlight the
seen characteristic absorption peaks can further strengthen the
generalizability and avoid overfitting. Note that merely using
channel attention without feature alignment cannot alter the
distribution of model features and thus does not bring perfor-
mance gain. Overall, through our feature alignment module
in MeatSpec-G, our model’s generalization performance is
greatly improved.

2) Unknown Adulterants: Additionally, to assess the cas-
caded open-set framework’s ability to detect novel adulterants,
we introduce two entirely new adulteration categories: starch
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Fig. 21. MeatSpec-G’s generalization performance under different weights of
feature alignment (γ).

TABLE VI
PERFORMANCE COMPARISON ON UNKNOWN ADULTERANTS OF

MEATSPEC-G AND BASELINES

Solution Known Acc Unknown Acc F1-Score
MeatSpec 92.11% 0.0% 0.6236

MeatSpec (Softmax) 92.11% 31.25% 0.7414
MeatSpec (Energy) 88.16% 47.92% 0.7725

MeatSpec (Mahalanobis) 90.79% 72.92% 0.8435
MeatSpec-G 92.11% 83.33% 0.8792

and gelatin, which are unseen during model training. These ad-
ditions expanded the test scope with 48 new MSI images (two
concentrations with 5% and 20% per adulterant) beyond the
original dataset. We use 80% of the data in original 347-image
dataset to train the model and 20% of the data as validation
dataset. The validation set is leveraged to calibrate optimal
thresholds, including the energy score threshold τenergy and
Mahalanobis distance threshold τmah. As depicted in Table VI,
the framework achieved an accuracy of 83.3% for unseen
adulterants, which improves 31.25% over the solution based
on softmax threshold. Moreover, we observe that MeatSpec-G
maintains the same accuracy for known samples, demonstrat-
ing robust novelty detection without compromising closed-set
accuracy. In addition, based on the ablation analysis results
presented in Table VI, removing either stage significantly
degraded performance. Firstly, the energy-only variant suffered
a 35.4% drop in unknown detection due to overconfidence
in ambiguous samples, while the Mahalanobis-only variant
exhibited a 10.4% gap as reconstruction artifacts obscured
discriminative features without Stage 1 filtering. Moreover,
Figure 22 shows the joint distribution of energy score and
Mahalanobis distance, revealing that both metrics exhibit am-
biguous regions in classification, which necessitates combining
them. This confirms the necessity of decoupling uncertainty
quantification and anomaly discrimination to overcome the
dual failure modes of overconfidence and spectral reconstruc-
tion bias.

VI. RELATED WORK

In this section, we briefly review existing works related
to meat adulteration detection, hyperspectral reconstruction
algorithms and cost-effective spectral systems.

Meat Adulteration Detection. Various methods have been
developed for detecting meat adulteration, each with its own
advantages and limitations [42], [43]. Early detection meth-
ods [7], [8], [44], [9], offer accurate detection of animal DNA
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Fig. 22. Joint distribution of energy and log-distance on known and unknown
samples.

compositions in meat products but often involve complex sam-
ple preparation procedures. Electronic noses and spectroscopy
techniques [12], [10], [11] are capable of obtaining accu-
rate results without sample preparation but require expensive
equipment. Smartphone-based solutions only rely on visual
features [45], [46], [13], [14] thus may struggle to scale up
to more harmful adulteration scenarios involving excessive
additives. In contrast, MeatSpec uses a reconstruction algo-
rithm to improve the spectral granularity of the system, thus
significantly reducing the cost of the system and can identify
more adulterants.

Hyperspectral Reconstruction Algorithms. The idea of
hyperspectral reconstruction is to reconstruct full hyperspectral
data from limited spectral measurements, reducing the need
for expensive and bulky hardware components. Conventional
spectral reconstruction methods rely on hand-crafted hyper-
spectral priors [47], [48], [49]. Recently, deep learning tech-
niques have been applied to learn the mapping function from
RGBs to HSIs [20], [50], [28], [16], [19], [17]. However, these
algorithms always ignore the deployment of reconstructed
spectra in practical applications. In the context of meat adulter-
ation detection, by combining advanced spectral reconstruction
algorithms with application-specific adjustments, MeatSpec
provides a more tailored and effective solution for meat
adulteration detection.

Cost-Effective Spectral System. Spectral systems are valu-
able for substance identification but expensive, which always
cost $10,000, and inaccessible for many users. Researchers
are working on making them more affordable and accessible.
To address this, efforts have been made to simplify one-
dimensional spectrometers using cheap LED and photodiode
components [51], [52], [53], [54]. However, since lack of
spatial-wise information, these systems can only work on
liquid samples or homogeneous samples. Some systems use
fewer components, sacrificing spectral resolution and requiring
a large physical size [29]. There have also been efforts to
use smartphones as spectral imaging systems, such as MobiS-
pectal [31], which focuses on the robustness of reconstructed
spectra under different ambient light conditions. In contrast,
MeatSpec operates in a semi-closed environment with minimal
environmental interference, allowing it to focus on improving
the quality of the reconstructed spectrum for fine-grained
applications.
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VII. DISCUSSION

In this section, we will discuss the limitations and potential
extensions of MeatSpec.

Continual Reinforcement Learning. Though our system
has achieved a good generalization performance, the prediction
error still exists. In practical uses, we can conduct continual
reinforcement learning to constantly update the model and
enhance its accuracy. Specifically, we can fine-tune our model
according to the human feedback of the detection results, at
regular intervals or whenever encountering abnormal adulter-
ated samples. For example, if no adulterant is detected by
our system but the user’s taste experience is abnormal, or the
sample is found as a problematic meat during government
sampling inspection, we consider this detection result to be
of low quality. We can exploit direct preference optimization
algorithm in reinforcement learning to update our model based
on high-quality and low-quality detection results.

Hardware Selection. Our paper expands the capability
domain of low-cost spectral devices by using algorithms to
distinguish samples with high similarity. If there is a similar
performance but lower cost of multi-spectral hardware or
better performance of spectral reconstruction algorithms, the
framework of MeatSpec we designed can still be improved on
alternative hardware and base reconstruction models. If future
MSI cameras have more than ten frequency channels, wider
channel ranges or no need for one-time calibration before
image collection, using which the detection accuracy and time
latency of our system can be further reinforced.

Extension Applications. Our solutions (AOSR and RAAD)
can be easily applied to other meat adulteration, such as lamb
adulteration. The basic rationales of restoring more distin-
guishable spectral images in AOSR and suppressing noise and
error of full-band spectra in RAAD are not changed, and the
mentioned six types of adulteration are universal. Furthermore,
our proposed system has the potential to be used to solve other
food adulteration problems, such as cereals and dairy products.
By offering such a consumer solution for food adulteration
detection, we can integrate these solutions into centralized
dining settings to ensure the food safety of the users.

VIII. CONCLUDING REMARKS

This paper presents MeatSpec, a consumer-grade spectral
imaging system for meat adulteration inspection. MeatSpec
simultaneously guarantees the fine-grained spectral capability
required for meat adulteration detection and maintains a low-
cost hardware setup. To achieve this, MeatSpec utilizes the
existing spectral reconstruction technology and incorporates
two novel modules, namely AOSR and RAAD. AOSR involves
adulteration-related prior information and contrastive learning
to reconstruct more easily distinguishable full-band hyperspec-
tral images. RADD devises a CNN-based adulteration detec-
tion model based on the error distribution characteristics of
the reconstructed HSI, and enhanced by knowledge distillation
structure. Additionally, we reinforce the generalizability of
our system and extend it to MeatSpec-G, by proposing a
feature alignment-based training scheme to deal with varied
adulteration conditions and a cascaded open-set recognition

framework to extend system capability on unseen adulterants.
We also assemble an extensive dataset containing diverse
adulterants. Experimental evaluations demonstrate that our
system achieves a 91.06% accuracy in detecting multiple
adulteration types, which surpasses the baseline performance
without our proposed designs by 21.58%. Further, the system
MeatSpec-G can generalize to unknown adulteration condi-
tions and unknown adulterants, with a high detection accuracy
of 88.89% and 83.33%, respectively.
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