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Developing an accessible fruit sugar content detection system for average users, particularly diabetic patients, is essential.
Current fruit sugar detection solutions often fail to balance ease of use with high accuracy. In this study, we introduce
FruitPhone, an innovative smartphone-based spectral imaging system that provides quantitative assessments of fruit sugar
content. To enable the smartphone to capture the fine-grained spectral features necessary for accurate sugar content analysis,
FruitPhone utilizes the smartphone screen to simulate multiple monochromatic light sources. This approach allows for
the collection of spectral data that extends beyond the standard three-channel RGB format. To address the discrepancies
between screen-generated and true monochromatic light, we propose a two-stage spectral reconstruction algorithm that
translates the smartphone’s pseudo-spectral data into real multi-spectral images for further analysis. Additionally, we tackle
environmental variability by employing a black screen light for reference data collection, which helps mitigate ambient
influences and enhance consistency. We also introduce a detrending algorithm for high-dimensional spectral images to correct
spatial inconsistencies while preserving spectral trends. We evaluate FruitPhone using 335 spectral images from 37 different
fruit types, achieving a normalized mean-absolute error of 8.48% °Bx, which is comparable to that of a laboratory spectral
system and demonstrates a 19.98% reduction in reconstruction errors, along with a 45.58% R? improvement over baseline
schemes.
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1 INTRODUCTION

Brix, a measure of sugar content in fruits, directly influences taste and quality. The need for an easy-access
fruit brix detection tool is highlighted for average users during purchasing. According to a study by the United
States Department of Agriculture (USDA), over 60% of consumers prioritize sweetness when selecting fruits,
making brix measurement vital for informed choices [50]. Reports indicate that approximately 1.3 billion tons of
food are wasted annually due to uninformed purchasing decisions [18]. Additionally, developing an easy-access
fruit brix detection solution may also help reduce healthcare costs related to diet-related health issues, such
as diabetes [47]. Research indicates that 70% consumers express concern over food quality but often lack the
knowledge to accurately assess sugar content in fruits [27], leading to unintentional purchases of higher-sugar
options that may not fit their dietary needs. Therefore, an easy-to-use tool can empower users to check fruit
quality while shopping, which can not only enhance the shopping experience but also promote healthier eating
habits and reduce food waste.

However, existing solutions for fruit brix detection can not meet the requirements of easy accessibility and
high accuracy simultaneously. Traditional methods like hydrometers, refractometers, and electronic tongues
provide precise sugar content measurements but require sample destruction for liquid extraction, making them
impractical to be used for average consumers during shopping [40]. In contrast, non-destructive methods such
as radio frequency and hyperspectral imaging analyze the radio or optical absorption characteristics of fruit to
determine sugar levels without damaging the sample. However, the high cost of existing non-destructive solutions
is a significant barrier to their widespread adoption for average users, which can cost $300 to $10,000 [16, 54]. To
further reduce cost and enhance the accessibility, some recent studies have tried to achieve smartphone-based
spectrometers [55, 64]. However, these solutions either require additional hardware support [22, 64] or have
limited spectral resolutions [55], which hinders their application in fine-grained quantitative spectral analysis.

In this work, we explore whether we can achieve quantitative fruit brix detection using only an unmodified
commercial smartphone. Our key idea is to reuse the optical sources and sensors in the smartphone to build an
accurate spectral imaging system. While some previous studies have attempted to develop smartphone-based
spectrometers [55, 57, 58, 64, 70], they have not been effective in the context of fruit sugar estimation. Specifically,
some approaches focus on reconstructing smartphone RGB images into hyperspectral images using deep learning
reconstruction algorithms [55] for fruit quality detection. However, the challenge is that estimating spectral
information from only RGB colors is an ill-conditioned one-to-many mapping problem, especially for metameric
colors [19, 73], limiting the quality of the reconstructed spectra. The study by [64] attempts to address this issue
by introducing an additional LED array, which reduces the versatility of the solution. Other research aims to use
the smartphone screen to simulate multiple colors and generate a new pseudo color spectrum, which proves
effective for identifying metameric materials [57, 58, 70]. However, since smartphone screens consist of RGB LEDs
rather than monochromatic LEDs, the resulting color spectra can only be employed for colorimetric analysis and
cannot be directly applied for quantitative spectral analysis.

To bridge this gap, we propose reconstructing the color spectra illuminated by smartphone screen light sources
into a real hyperspectral image. The advantage of using color spectra instead of RGB images for reconstruction is
that they contain many more monochromatic channels. Previous studies have demonstrated that reconstruction
can be more reliable with a greater number of input channels [19, 73]. Therefore, by modulating and time-
multiplexing the smartphone screen, we can capture images across dozens of different channels, thereby enhancing
the quality and reliability of spectral reconstruction.

However, putting this idea into practice is not straightforward due to several significant challenges:

e Limitations of Screen-Simulated Light. A smartphone screen consists of structured red, green, and
blue LEDs, which means that the simulated monochromatic light is actually a combination of these
colors in varying proportions. While this approach can provide more detailed spectral information than
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standard three-channel RGB images, the functioning of each channel is fundamentally different from that
of traditional multi-spectral images. This difference makes existing reconstruction algorithms ineffective,
as they rely on a clear and consistent interpretation of each channel.

e Impact of Uncontrolled Environments on Data Quality. Imagine trying to take a picture of a fruit
under a bright light, with shadows dancing around it, or at different distances where the light might not hit
evenly. Factors like varying ambient light conditions and the distance between the smartphone camera and
the fruit can create instability and uneven light distribution in the collected data, leading to challenges in
achieving accurate and reliable results.

To address the challenges outlined above, we propose FruitPhone, a smartphone-based spectral imaging system
that can accurately quantify the sugar content of various fruits. For the first challenge, we recognize that,
according to CIE-RGB color space mapping [65], screen-simulated monochromatic light can be viewed as a
mapping from a real monochromatic sensor to RGB LEDs. Therefore, we can first establish an inverse mapping
to translate the collected data from pseudo-spectral space to real spectral space while maintaining the same
number of channels. This approach allows us to increase the number of input channels available for spectral
reconstruction, thereby enhancing reconstruction reliability. Specifically, we introduce a two-stage spectral
reconstruction algorithm: the first stage translates the collected pseudo-spectral images into real multi-spectral
images using a three-branch transformer module, and the second stage employs a state-of-the-art spectral
reconstruction model to derive full spectra from the translated features. For the second challenge, to mitigate
disturbances from surrounding environments, such as varying light conditions, we incorporate reference data
captured with a black screen light. Since this reference data experiences the same environmental influences as the
other data, we can effectively eliminate disturbances by subtracting the reference. Additionally, to address light
unevenness caused by variations in light sources and collection distances, we propose a detrending algorithm for
high-dimensional spectral images that reduces spatial unevenness while preserving spectral trends.

We implement FruitPhone on a commercial smartphone, Google Pixel 4 XL. Given the informative absorption
bands of sugar in the near-infrared (NIR) range, we incorporate NIR images during the second step of our spectral
reconstruction process. We evaluate the effectiveness of FruitPhone using 335 spectral images collected from 37
different types of fruits. Our system achieves a normalized mean-absolute error (NMAE) of 8.48% °Bx, which
is only 1.3% °Bx higher than that of an expensive laboratory hyperspectral spectrometer (priced over $10,000).
Given the accepted quality estimation error in the food industry is 10% [1], the error from FruitPhone has a
negligible impact on taste and is imperceptible to consumers. Compared to the state-of-the-art smartphone-based
spectral system baseline [55], our solution reduces reconstruction errors by 19.98% and increases the R? value
for brix regression by 45.58%. Additionally, FruitPhone demonstrates remarkable robustness across various
setups, including diverse fruit placements, user configurations, smartphone models, and uncontrolled real-world
scenarios.

We summarize the contributions as follows:

o We develop the first system that enables accurate, quantitative assessment of fruit sugar content using only
a smartphone, making this technology more accessible than ever.

o By utilizing the smartphone screen to simulate multiple monochromatic light sources, we address the
limitation of smartphones providing only three-channel input. This approach, combined with our innovative
two-stage spectral reconstruction algorithm, significantly enhances spectral reconstruction quality, enabling
quantitative detection using only smartphone-integrated components.

e We implement FruitPhone on a commercial smartphone and evaluate its effectiveness across various fruit
types and environmental conditions, demonstrating its reliability in real-world scenarios.
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Fig. 1. Built-in optical sources and sensors of a commercial smartphone (a). Physical structure of the smartphone screen (b)
and camera (c), which both contain no more than three wavelength channels (d-e).

2 BACKGROUND AND FEASIBILITY STUDY
2.1 Spectral Imaging for Fruit Brix Detection

Spectral imaging technology is a powerful tool to assess fruit quality such as ripeness, sugar content, and internal
defects in a nondestructive way [51, 71]. It analyzes the unique absorption and reflectance characteristics of light
with different wavelengths as they interact with fruit tissues to infer the concentration of the components.

According to Beer’s Law [61], A = ¢l - C, the fruit absorbance spectrum A is linearly related to the concentration
of the components C. The ¢ and [ are the molar attenuation coefficient and the optical path length of the light,
which are effected by the physical structure of the sample. The spectrometer is used to obtain sample’s absorbance
or reflectance spectrum, whose output is formulated as,

L=1(xy,A) =EQ) -R(x,y,A) - S(A) =E-R-S, (1)

where R is the samples’ reflectance spectrum that can be transferred into absorbance with A = log(1/R), x, y and
w are the width, height and wavelength channel respectively. E and S are the light source radiation and detector
sensitivity of the spectrometer hardware. Therefore, we can build a relationship between the spectrometer output
I) and the components’ concentration C, i.e., C = ¢(I; E, S, l). Thus ,we can identify and quantify fruit’s sugar
content by analyzing its spectral absorption.

In the context of fruit brix detection, some wavelengths in the near-infrared (NIR) and visible range have
been identified as critical for measuring sugar content [29, 29, 45]. For example, 740 to 800 nm correspond to
vibrational overtones and combinations of molecular bonds present in sugars (e.g., C-H and O-H bonds) [63], 680
nm and 720 nm in the visible range can also provide insights into chlorophyll content [10]. By analyzing the
absorption spectra, spectroscopy can deliver accurate assessments between varying levels of sweetness in fruits
while maintaining their integrity. However, the high cost of existing spectral imaging solutions is a significant
barrier to their widespread adoption for average users. A commercial spectrometer for fruit sugar content can
cost $300 to $10,000 [16, 54], making it inaccessible for smaller operations and individual users. In contrast, a
smartphone-based fruit sugar content detection system offers cost-effectiveness, portability, and user-friendliness
compared to existing solutions.
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Fig. 2. Three types of existing smartphone-based spectrometers, relying on different approaches to extend the number of
wavelength channels in the smartphone’s output: (1) external components, (1) RGB-based spectral reconstruction, and (l11)
screen illumination spectra.

2.2 Smartphone Optical Sensors

Smartphones are equipped with various optical components that enhance their functionality, as shown in
Figure 1(a). These optical sensors can be taken as light sources or detectors for a spectral imaging system.

Light Sources in Smartphones. Smartphones are equipped with two primary light sources: the flash light and
the display screen. The flash light, typically an white LED, provides a brief, high-intensity burst of illumination.
The display screen, often an LCD or OLED, consists of several layers including color filters (as shown in Figure 1(b)),
allowing it to emit a range of colors and intensities. This versatility enables the display to serve as a continuous
light source, adjustable for various imaging scenarios. Figure 1(d) is an example of the illumination spectrum for
the two light sources. Both light sources can be repurposed for spectral imaging; the flash light is effective for
capturing quick, bright images, while the display allows for controlled illumination across different spectral bands.
However, due to the lack of splitter, they are limited to provide fine-grained and continuous monochromatic light.

Cameras in Smartphones. Cameras in smartphones typically include front-facing and rear-facing RGB
cameras. Some recent phones, like Apple iPhoneX and Google Pixel4, involving a near-infrared camera for face
identification. Figure 1(c) shows the structure of a commercial smartphone, which consists of a lens system that
focuses light onto a Complementary Metal-Oxide-Semiconductor (CMOS) image sensor covered with a color filter
array (CFA), allowing it to capture red, green, and blue components of visible light. The spectral sensitivity of the
CMOS image sensor is shown in Figure 1(e). This camera is optimized for full-color imaging but is limited to the
visible spectrum. In contrast, the NIR camera is designed to capture light in the near-infrared spectrum, typically
from 700 nm to 1100 nm. While both cameras can serve as light detectors in a spectral imaging system, the RGB
camera is effective for visible spectrum analysis, and the NIR camera extends capabilities into the near-infrared
range.

2.3 Smartphone-based Spectrometers

Although equipped with extensive optical sensors, smartphones still lack an effective way to generate fine-grained
and continuous wavelength spectra. In comparison to the hyperspectral images in Eq 1, the RGB images obtained
by a smartphone contain only three wavelength channels, represented as I.(x, y, 3) = [I(x, y), I;(x, y), I, (x, y)].
Each channel can be formulated as:

L(xy) = L E(D) - R(x,y.2) - Se(A), @

where S, is the smartphone’s CMOS sensitivity for the corresponding color. Therefore, previous works have
attempted to extend the number of wavelength channels in the smartphone’s output. As illustrated in Figure 2,
there are three main approaches.

External Components. One straightforward idea is to add external illumination or detection sensors to the
smartphone [22, 26, 64]. By adding an LED array with different wavelengths (E,,, Ej,, ..., E;) and illuminating
them through time division multiplexing, we can capture a series of images representing various wavelengths, i.e.,
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I),, I, ..., I. However, the spectral image obtained by this method has the same number of bands as the external
LED array, making it challenging to achieve hundreds of bands like those found in commercial hyperspectral
cameras. Although [64] addresses this issue by employing spectral reconstruction algorithms, the necessity for
additional hardware still limits its versatility for average users.

RGB-based Spectral Reconstruction. Another idea is to utilize machine learning algorithms to reconstruct
hyperspectral images from RGB images captured by the smartphone [24, 55]. The rationale is to build a mapping
matrix from the smartphone’s hardware parameters to the hyperspectral system’s, i.e., I} = M X I.. However,
the challenge is that estimating spectral information from only RGB colors is an ill-conditioned one-to-many
mapping problem, especially for metameric colors [19, 73], limiting the quality of the reconstructed spectra. [55]
utilizes the NIR sensor on mobile phones, expanding the reconstruction channels to 4 (RGB+NIR) and successfully
restoring 68 channels of hyperspectral data for fruit quality inspection. However, the ill-posed nature of the
problem still limits reconstruction performance, making it suitable only for basic classification tasks rather than
for precise measurements, such as determining sugar content.

Screen Illumination Spectra. Some previous work also tried to generate more than three colors using
the smartphone screen [57, 58, 70]. By mimicking k monochromatic colors using the smartphone screen and
playing them in sequence, we can obtain a color spectrum, (3, x, y, k). It contains multiple frames, each of
which is related to one monochromatic color. This color spectrum is validated to have good performance in
identifying various substances with metameric colors, showing promise in qualitative tasks, such as material
classification [70] and food adulteration detection [58]. However, the color spectrum differs physically from real
absorption spectra, making it unsuitable for direct component quantification.

2.4 CIE-RGB Color System

FruitPhone proposes to utilize the screen sensors to simulate monochromatic light at various wavelengths for the
spectral imaging system. One of the key steps is to translate the wavelength of monochromatic light into R,G,B
values. To achieve this, we need to leverage the CIE-RGB color system, a color representation model developed
by the International Commission on Illumination (CIE). According to the CIE-RGB color system, each color can
be represented as a combination of these three primary colors, with values typically ranging from 0 to 255 in
digital displays. Specifically, to translate the wavelength A into (R, G, B) values, we need the following three steps.
(1) Translate wavelengths to CIE color coordinates (x, y) based on the CIE 1931 color space [65]. And define the
illumination value Y = 1. (2) Convert the chromaticity coordinates (x, y) to RGB using the following formulas:

1-x-— 1-
R=vy. X Goy. 1T¥ Y p_y (-9 ()
y

y y

(3) Map CIE-RGB values to the device’s RGB color space according to the display’s color gamut and characteristics.
Figure 3 shows CIE-RGB color space chromaticity diagram and the translation of monochromatic light spectra to
smartphone color spectra. Although the color spectrum is pseudo, it provides more spectral information than the
original RGB images, showing differentiation for metameric colors. On the other hand, the increased number
of monochromatic wavelengths alleviates the ill-conditioned one-to-many mapping problem in RGB-based
spectral reconstruction [73]. However , reconstructing hyperspectral images from smartphone color spectra is
still challenging, which is the target of this work.

3 FEASIBILITY STUDY

We conduct a preliminary experiment in spectral space to assess the feasibility of FruitPhone. Our primary
objective was to validate two hypotheses: (1) The pseudo-spectrum generated by monochromatic light simulated
through the phone screen contains more spectral information than the RGB images. (2) An increase in the number
of input spectral channels can improve the accuracy of spectral reconstruction.
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monochromatic spectra.
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To validate these hypotheses, we collect 4,000 one-dimensional absorption spectra ranging from 400 to 1000 nm
from 200 fruit samples across 10 different types. We utilized the camera and OLED screen parameters published
by manufacturers to simulate various spectra [41]. Figure 4 illustrates the parameters used for this simulation.
Specifically, the RGB spectra were calculated by multiplying the fruit spectra R with the smartphone flash emission
Ef145n and the RGB camera response Sy, resulting in a shape of (n,3), where n is the number of samples. We then
uniformly selected 20 wavelengths within the range of 400 to 700 nm and generated screen emission spectra
through CIE-RGB color space translation. The screen spectra were calculated by multiplying the screen emission
Egcreen With the fruit spectra and the camera parameters, yielding a shape of (n, 20, 3). The multi-spectra utilized a
light source at the same wavelengths as the screen spectra, resulting in a shape of (n, 20). We employed standard
normal variate (SNV) normalization to standardize the spectra to the same intensity scale before inputting them
into a partial least squares (PLS) regression model to predict sugar content.

Figure 5 presents the results of sugar content regression using various spectral types. The RGB data, which
contains only three channels, exhibited the poorest performance, while the full-band spectra with 138 channels
achieved an R? value of 0.94. The screen pseudo-spectra and real spectra demonstrated comparable performances
with R? values of approximately 0.62 and 0.68, respectively. These results validate that the simulated screen
spectra contain more informative spectral information than the RGB data, suggesting a potential for improved
performance in spectral reconstruction. Furthermore, we employed a linear regression (LR) model, which is
widely used as baseline for one-dimensional spectral reconstruction [25], to reconstruct the 138-band spectra
using down-sampled data with varying channel numbers. Figure 6 illustrates the reconstruction error for various
number of input spectra channels. We can clearly observe that when the input spectra contains few channels ,i.e.,
less than 5, the reconstruction errors are much larger. Furthermore, a clear decreasing trend in reconstruction
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Fig. 7. lllustration of the architecture of FruitPhone, which includes four modules: data capture module, data preprocessing
module, screen spectral reconstruction module, and brix regression module.

error is observed as more channels are utilized, underscoring the importance of having sufficient channels for
accurate and reliable spectral reconstruction.

4 SYSTEM DESIGN

This section elaborates on the system design of FruitPhone. Figure 7 illustrates an overview of FruitPhone ’s
system design. Specifically, the data capture module (§ 4.1) introduces the smartphone app that scans the fruit
sample with varying monochromatic light while capturing a monochromatic pattern video and a near-infrared
image. Then, we feed the captured RGB video and NIR image into the data processing module (§ 4.2) to extract the
region of interest (ROI) and align it in the spatial dimension. Additionally, we reduce the noise caused by spatial
unevenness and surrounding interference from the data. Subsequently, the cropped and aligned RGB video and
NIR image are input to the screen spectra reconstruction module (§ 4.3) to reconstruct full-band hyperspectral
images using a two-stage transformer-based reconstruction model. Finally, after smoothing and normalization,
the fruit spectra are used by a convolutional neural network (CNN)-based regression model to accurately predict
the sugar content of the fruit sample (§ 4.4).

4.1 Data Collection

Compared with the traditional spectral reconstruction work based on mobile phones [23, 55], which only uses the
data from the three RGB channels for reconstruction, FruitPhone utilizes the phone screen to simulate monochro-
matic light of different wavelengths to obtain more wavelength channels. Specifically, we uniformly select several
different wavelengths from the visible range (i.e., 400-700 nm) and calculate their RGB values according to the
CIE-RGB Color system. It is worth noting that FruitPhone can change the mode of the monochromatic light
on the screen to achieve better results according to the spectral absorption characteristics of the object being
analyzed. For example, if carotenoids exhibit absorption characteristics at 460-520 nm, the number of bands
near 460-520 nm in the monochromatic light mode can be increased. In addition, the value of K is linked to the
acquisition time and the resolution of the phone. A larger K value facilitates reconstruction but means a longer
acquisition time. In this paper, we define K = 45, and the acquisition time is about 2 seconds, which is easy
for users to stay still while can obtaining enough monochromatic bands. Additionally, we added a white light
and a black light before and after the K monochromatic pattern, respectively, as calibration data to eliminate
environmental effects. We developed an app that uses the front camera of the phone to record while the screen
emits monochromatic light, and then activates the front NIR camera to take an NIR picture after the recording
is completed. We then extract key data frames from the recorded video, each of which captures a fruit sample
illuminated by a different monochromatic light.
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4.2 Data Preprocessing

4.2.1 ROl Extraction and Data Alignment. The first step after data capturing is to achieve pixel-to-pixel alignment
between the smartphone RGB video, NIR image, and the HSI image, which is necessary for spectral reconstruction.
Furthermore, to reduce processing time, we focus on the most informative area and crop the central areas of fruit
samples for further analysis. Specifically, the pipeline contains the following steps.

Align RGB Video and NIR Image. Since both the field-of-view and shooting angle of the smartphone RGB
and NIR cameras are different, it’s necessary to align the RGB video data and NIR image before extracting ROI
for further analysis. Fortunately, because the parameters of the two cameras are fixed, we only need to calculate
a mapping relationship (M) with a small number of samples, which can be applied to other data. In this case, we
first use several sets of images to learn the alignment matrix (M), including rotation, translation, padding, and
scaling, and apply M to all data. We then leverage the state-of-the-art segmentation model, Segment Anything
Model (SAM) [30], to extract ROI regions from the aligned data. When extracting ROI from RGB data, we find
two types of identification errors: incomplete extraction, and additional shaded areas. We avoid the former by
setting a size threshold for the extraction area. For the second problem, we observe that the contrast between
shadows and objects in NIR images is higher than in RGB data. Therefore, we extract ROI from aligned RGB data
and NIR data respectively, then merge the extracted ROI masks, and extract the common part as the final ROI
region. Using this method, the ROI region of the aligned data has an average Intersection over Union (IOU) of
more than 0.97.

Align Smartphone and HSI Data. In addition, pixel-to-pixel aligned smartphone and HSI data are required
to train the spectral reconstruction model. The alignment pipeline contains three steps. (1) Extract ROI and
central circle. We first employ the SAM to accurately identify and isolate the ROI, simultaneously generating
a binary mask to highlight the selected area. (2) Central Alignment. We subsequently calculate the maximum
inner circle of the ROI to achieve image size adjustment. We adjust the image size according to the inner circle
radius, and use linear interpolation to obtain the proper size for further analysis. (3) Rotation and Alignment. We
then perform rotation to align the angle of the two ROI areas. The rotation angle is decided with the largest IOU
during the rotation process.

Cropping and Resize. Following this, to avoid potential shadows during shooting, we take 80% of the internal
area after cropping as our final area to extract. Subsequently, we adjust the dimensions of the cropped smartphone
and HSI regions to meet the necessary size requirements for further analysis. Specifically, the extracted RGB size
is (W, H, F, 3), the NIR image is (W, H, 1), and the HSI image is (W, H, C), where W, H is the width and height of
the image, F is the number of frames of the RGB video, and C is the number of spectral channels for the HSI data.

Based on the above procedure, we can ensure the processed smartphone data and HSI images are well paired
regardless of the two cameras’ shooting locations, angles or resolutions.

4.2.2 Data Noise Cancellation. The principle of spectral reconstruction is to learn the mapping relationship
between mobile phone data and hyperspectral data in the spectral dimension. Therefore, removing the unstable
noise from the input data is an important prerequisite for learning stable reconstruction mappings. By analyzing
the data, we find that there are two main sources of noise in the data: uneven distribution of the spatial light field
and environmental interference. We eliminate the two types of noise by specific approaches.

Detrend Spatial Unevenness. As shown in Figure 8, due to the curvature of the fruit sample, the distance and
angle of the light emitted by the mobile phone screen to the sample are different, resulting in uneven intensity in
the spatial dimension. In particular, the brightness of the middle is greater, and the brightness of the surrounding
is smaller. For example, Figure 9 shows one frame of an apple’s RGB video, while the blue line in the left plot
of Figure 10 shows the brightness of different pixels on the diagonal, where the horizontal axis represents the
pixels from the top left to the bottom right, and the vertical axis represents the mean value of the three channels
of the pixel. We can clearly see that the intensity of the image is the strongest in the middle, and the two-way
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Fig. 11. The R,G,B channel intensity spectra under various light conditions before and after calibration.

weakening is reflected in the spectral dimension, which shows a huge difference in the spectrum of different
regions of the same fruit sample.

To this end, we design a detrending scheme for two-dimensional data, which aims to eliminate the intensity
differences in the spatial dimensions of the samples, while preserving the intensity correlation in the spectral
dimensions. The core idea is to convert the detrending problem of two-dimensional data into a one-dimensional
detrending problem. Specifically, the detrending process involves automatically clustering pixels into intensity-
based gradient levels. In this study, we set the number of gradient levels to 10, optimizing this choice to balance
computational efficiency with effective noise reduction. This selection is empirically validated, as using fewer
levels resulted in insufficient correction of intensity drifts, while increasing the number of levels introduced
unnecessary computational costs without providing additional denoising benefits. Following this, we apply
one-dimensional detrending to the average intensity array to obtain the intercept b and slope k. We then calculate
the trending map by multiplying the granularity by the slope k and subtract this trending map from the raw
images. For example, for an image with an intensity range of [Lnin, Inax ], We divide this range into 10 equal-width
intervals. Each pixel is assigned to its corresponding interval based on its intensity value. We then compute the
mean intensity for each interval and perform one-dimensional detrending on the average intensity array. Finally,
we apply the detrending to each pixel using the formula: Ijerena (%, y) = Law(x,y) — (m; - Lrgw(x,y) + b;), where
i denotes the interval to which pixel (x, y) belongs. Figures 9 and 10 show the spatial and spectral dimensions
of the original and de-trended data, from which we can see that the processed data narrows the differences in
spatial dimensions while preserving the change trend of spectral dimensions.

Reduce Surrounding Interference. Since FruitPhone is supposed to be used under various environments,
interference in the environment, such as ambient light or user jitter, may affect the quality of the collected data.
Figure 11(a-b) shows the intensity spectrum of three channels of RGB video data R, G, and B of the same sample
collected under two different ambient lights, namely bright (400 1x) and normal (120 1x). From the figure, we
can clearly see that the strong ambient light will drown out the trend of the data with the change of the screen
light mode. Therefore, these noises need to be removed from the data to obtain the correct monochromatic light
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Fig. 12. The architecture of our proposed two-stage spectral reconstruction model, which separates the screen spectral
reconstruction problem into two tasks: spectral translation and spectral reconstruction.

pattern. To this end, FruitPhone inserts reference video frames illuminated by white and black light sources at
the beginning and end of the captured RGB video. According to the display principle of OLED, the white light
source represents R, G, and B sensor brightness is 1, and the black light source represents R, G, and B sensor
brightness is 0. Therefore, the two reference frames collected can be used as reference values for black and white
calibration. We first subtract the black reference frame from the raw data to eliminate the basic intensity from the
background, then divide by the trend of brightness change from the white reference frame to the black reference
frame to compensate for the reduced intensity of the phone screen light source. Figure 11(c-d) illustrates the
RGB video intensity spectra under the two ambient light conditions after calibration, from which we can clearly
observe the intensity changing pattern between various video frames.

4.3  Smartphone Screen Spectral

Through the pipeline of data preprocessing, we obtain clear fruit RGB video frames and NIR images for spectral
reconstruction. However, since the light source of the system is the combination of the RGB LEDs rather than
real monochromatic light, the previous spectral reconstruction model cannot be directly applied. The HSI images
collected by the hyperspectral system can be formulated as Iys; = E - R - S, where E is the emission intensity of
the light source, S is the sensitivity of the CMOS detector of the HSI system, and R is the reflectance spectrum of
the sample. Typically, the HSI system contains a slit to separate the light source into monochromatic light beams,
thus we can regard E as an array of monochromatic light sources, i.e., [E,,, ..., Ej,,]. Comparing with the HSI
system, the system separates the light source by modulating the screen display. Thus, the collected data can be
formulated as:

Iphone = Escreen * R Sp, (4)

where S, is the sensitivity of the smartphone cameras, which contains only three channels. Escycen is the screen-
simulated monochromatic light sources, contains K monochromatic frames. The screen illumination has a fixed
non-linear mapping to smartphone display sensors and monochromatic wavelength according to the CIE-RGB
Color Space, i.e.,

Escreen = [(D(ERGBa E/ll)a cens (I)(ERGBs E)L](]s (5)

where 3 << K < M. According to [73], the larger the number of spectral bands obtained, the more accurate
the reconstructed curves are, theoretically. Thus, FruitPhone is expected to have better reconstruction perfor-
mance than RGB-based solutions. However, since Egceep, is different from the real monochromatic light sources
[E%,, .. Eag ], we can not directly apply existing reconstruction algorithms on Ippone.
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To solve this challenge, we propose a two-stage spectral reconstruction (SR) algorithm, as shown in Figure
12, which separates the screen spectral reconstruction problem into two tasks: spectral translation and spec-
tral reconstruction. Firstly, we build a three-branch transformer structure to translate the screen spectra into
monochromatic spectra with the same dimension, i.e., to translate data from (x, y, 3, k) to (x, y, k). This process
mimics the inverse step of CIE-RGB color space translation process, thus we process the RGB channels in isolation.
Secondly, we conduct the spectral reconstruction step on the translated spectra and combine it with the captured
NIR images. This module focuses on enhancing the low spectral resolution caused by smartphone cameras.

Spectral Translation. The target of spectral translation is to translate the pseudo color spectra to the real
absorption spectra at the same number of channels. We notice that a simulated monochromatic light can be
taken as a mapping from a real monochromatic sensor to RGB LEDs, i.e., Escreennt = Z(Ergn, Ea). Thus, without
changing the spectral dimension, we can realize the mapping of smartphone screen spectra to multi-spectral
images. As shown in Figure 12(a), we achieve this by a three-branch transformer-based model. The shape of the
input RGB data is (W, H, K, 3), where K is the video frames that related to the screen monochromatic pattern
and 3 is the R,G,B channels according to the smartphone camera sensitivity. Thus, we first separate the three
channels and conduct translation separately, and then concatenate the translated features before input into the
convolution embedding layer. This is because the spectral space translation process only relates to the screen
light sources, manifested by the consecutive video frames. After that, we splice the output features together in
order because each feature represents a spectrum over the specific wavelength range. The translation of each
channel is related to all frames, which is very similar to the problem of two-language translation. Therefore,
we refer to a transformer-based model, i.e., SPECAT [69], as the backbone of our translator model (shown in
Figure 12(b)). The translator contains several cumulative-attention blocks (CABs) within an efficient hierarchical
framework to extract features from non-local spatial-spectral details. After translation, the concatenated features
are input into a 1x1 convolution layer to interact information across the channels. The output size is (W, H, F).

Spectral Reconstruction.We then utilize the state-of-the-art spectral reconstruction model, i.e., MST++ [9], to
increase the channel numbers of the translated spectra. It is worth noting that we introduce the NIR-band image
during the spectral reconstruction stage to enhance the reconstruction accuracy in the NIR range, which contains
rich absorption characteristics of the fruit sugar content. Similar to our spectral translation backbone, MST++
[9] utilizes a spectral-wise multi-head self-attention block to capture non-local self-similarity and long-range
dependencies during the reconstruction process, which has shown strong capability on both RGB and MSI
reconstruction tasks. We make some simple modifications on MST++ [9] to fit our reconstruction task. Firstly,
we modify its input and output size to fit our dataset. Then, instead of using three single-stage spectral-wise
transformer (SST) blocks, we use only one SST block since the increasing number of input channels simplifies
the reconstruction difficulty.

Shrinkage Loss. Furthermore, we observe that the reconstruction model is not sensitive to hard samples, as
few samples may have large reconstruction error, leading to extremely poor accuracy for sugar content regression.
To solve this problem, we introduce a shrinkage loss function according to [39] to penalize the importance of
easy training data. Specifically, we propose a modulating factor to re-weight the square loss to penalize easy
samples only. The shrinkage loss function is defined as:

_ Lvse
1+exp(a- (c — Lvrar))’

(6)

where a, ¢ are the hyper-parameters controlling the shrinkage speed and the localization respectively. Lysg is the
mean-square-error of the sample and Lyrag is the mean relative absolute error that computes the pixel-wise
disparity between all wavelengths of the reconstructed HSIs (Y(1)) and ground-truth HSIs (Y (1)), which are
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By adding shrinkage penalty on easy samples, the reconstruction model can pay attention on minimizing the
error of hard samples that have a large Lyrag-

4.4 Fruit Sugar Content Regression

Given the presence of redundant information in the hyperspectral imaging cubes, instead of using all pixels to
train the regression model, we divide the HSI cube into several patches and calculate the mean spectrum for
each patch for further regression analysis. In this work, each patch is a rectangle area of 8 pixels by 8 pixels.
Additionally, we apply standard normal variate normalization to standardize the spectra to the same absorbance
level, correcting for variations in optical path length and light scattering.

Different from previous fruit sugar content detection works that build regression models for each type of
fruit [1, 29, 45, 63], we design a convolutional neural network (CNN) for all fruit samples. Since users may use
FruitPhone to detect brix values for different fruits, building one generalizable model for all fruit types is more
accessible than a fruit-dependent regression model. Figure 13 shows the architecture of our proposed CNN-based
sugar content regression model. The model contains three convolutional layers to mimic the feature selection
process of spectral analysis. We utilize a large kernel size for each convolutional layer, i.e, 21, 19, and 17, to
expand the broad receptive field so it can capture a wider range of context information in the neighboring
wavelength bands. A three layer fully-connection structure is used to learn fruit sugar content related information
from the extracted spectral features. We employ a dropout layer (rate=0.5) after the fully connected layer, a
widely adopted configuration in dense layers, to mitigate overfitting risks [59]. It’s worth noting that we utilize
Leaky ReLU activation after the fully-connection layers to ensure no spectral features are discarded during
backpropagation [8, 25]. The CNN structure simulates the spectrum analysis process of traditional stoichiometric
methods, including feature extraction and nonlinear fitting.

Compared with traditional methods, the network based on deep learning has better fitting ability and general-
ization, making it more suitable for daily sugar content estimation scenarios. Table 1 shows the performance of
traditional machine learning models’ and our designed CNN model for fruit brix estimation. These traditional
models have been utilized in previous fruit sugar content estimation works [1, 37, 63], showing good performance
in single fruit sugar prediction. We compare these models using our collected hyperspectral images dataset,
which contains 37 types of different fruits with brix values ranging from 3.1 ~ 23.1°Bx. We randomly select 20%

1We select these models based on previous works. The partial least squares (PLS) model is widely used for fruit sugar content regression,

such as in [1, 63]. The extreme learning machine (ELM) is a popular randomization-based learning algorithm that can be used for spectral
analysis tasks [34]. The 3-layer ANN shares the same parameters with [37], demonstrating good accuracy in fruit sugar estimation.
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of the hyperspectral images for testing and the use rest for training. From the results in Table 1, we can see that
our proposed CNN model outperforms all existing solutions in the fruit sugar estimation task.

5 Implementation

We develop a proof of concept for FruitPhone on the Android platform, utilizing the commercially available Google
Pixel4 XL due to its accessible near-infrared camera. To validate the extension capability of FruitPhone across
different smartphones, we also implement the system on two other smartphones and evaluate the performance
(in § 6.5.1).

Smartphone Setups. The application leverages the uniformly changed color patterns to scan samples while
simultaneously recording with the front-facing camera and capturing NIR images. To ensure data stability across
various ambient conditions, we maximize the screen intensity and maintain it at this level throughout the data
collection process. Additionally, we set a capture time of 2 seconds, resulting in K = 45 for each smartphone’s
data. This capture time enables users to complete the capture efficiently without excessive effort while obtaining
as many frames as possible. A single run of the app on Google Pixel 4 XL consumes 2.945 mAh (0.079% of the
battery capacity). The largest contributor is the prolonged screen usage (1.635 mAh, 55.5%), followed by the
camera (1.2 mAh, 40.7%). The CPU usage was concentrated in the 1.2 GHz-2.8 GHz range, indicating that the
application computing is relatively intensive. Considering the prolonged screen usage may contribute relative
high power consumption, we also discuss the influence of shortening this capturing time and altering the uniform
change pattern in §6.5.2.

Utilize Pipeline. The reconstruction and sugar regression models are trained on a workstation. Once trained,
these models are deployed to the mobile device for real-time inference. After the user capture a piece of new data,
the captured frames undergo alignment and de-noising using the preprocessing methods outlined in Section
4.2. We utilize the SAM model to extract the region of interest (ROI) at the center of the fruit while discarding
background information, thereby reducing the computational load. The SAM model processes both RGB and
NIR images, which takes approximately 2.04 seconds. For data preprocessing, we enhance efficiency through
vector calculations. The detrending algorithm is relatively time-consuming, requiring 0.2726 seconds per image,
while black-and-white calibration takes only 0.014 seconds. Subsequently, the reconstruction model converts the
collected data into hyperspectral data consisting of 138 channels within the 400 to 1000 nm range, which takes
0.1177 seconds for a single image sized 50x50 pixels. The reconstructed hyperspectral data is then fed into the
pre-trained sugar regression model for sugar content prediction, which requires an additional 0.1207 seconds per
image. Finally, the results are communicated to the user, providing immediate feedback on the sugar content of
the scanned samples. In total, each interference takes approximately 3 seconds.

6 PERFORMANCE EVALUATION

This section evaluates the performance of FruitPhone for brix estimation of various types of fruits. We validate
the performance of FruitPhone by answering three key questions: 1) Does FruitPhone achieve better performance
of sugar content detection than baselines? (§ 6.2) 2) Do the modules of the system effectively improve the
performance? (§ 6.3) 3) Can FruitPhone achieve robust adulteration inspection under various experimental
setups? (§ 6.4)

6.1 Study Setup

6.1.1 Data Collection. We prepare a total of 335 fruit samples from 37 different types or varieties purchased from
a local supermarket, as shown in Table 2. 2 These fruits have diverse characteristics in terms of textures, colors,
ZWe open our processed dataset (335 hyperspectral images, RGB color spectra, near-infrared reference, and ground true brix values) on
https://drive.google.com/drive/folders/1jJQgOuB_yFYtod44 AE5TEXKQXsivVbmj?usp=sharing.
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Table 2. Statistics of the fruit dataset, containing 37 fruit types and 335 samples.

Category Fruit Type (Number of Varieties) Sample | Brix Range (°Bx)
Grapes (6), Tomato (2), Strawberry (1), Blueberry (1),

Berry Mulberry (1), Guvav (1), Kiwi (1), Passion Fruit (1), Pepino (1) 180 3.1-23.1
Apples (4), Pear (2), Peach (1), Jujube (1),

Drupe and Kernel Loquat (1), Mango (1), Cheery (1), Persimmon (1) 75 8.9-20

Citrus Mandarlr? (3), Orange (2), Lemon (2), Kumquat (1), 75 46-015
Grapefruit (1)

Cucurbits 5 11.4-16.3

(a) Partial Fruit Samples in Training Dataset (b) FruitPhone Setups  (c) Brix Ground Truth

Fig. 14. Partial samples in the training dataset and ground truth devices used in evaluation.

shapes, sizes, and chemical compositions. The brix values range from 3.1 ~ 23.1°Bx, covering all levels of fruit
quality. We also consider some thick-skin fruits like lemon and grapefruit, whose skin depth is about 1.5cm. We
prepare 5-20 samples for each fruit type. For some common fruits like apples or grapes, we also prepare several
varieties whose physical and chemical characteristics are diverse. The fruits are purchased from several stores
and at different times to ensure the diversity of freshness/ripeness levels. Figure 14(a) shows a portion of our
fruit samples. We collect hyperspectral images using a Cubert FirefIEYE S185 Hyperspectral Imager [21] (about
$20,000) under two halogen lights at room temperature. Correspondingly, we capture the videos using the Google
Pixel 4 XL smartphone with a capture time of 2 seconds and NIR images for each sample under the setup shown in
Figure 14(b). The smartphone and fruit samples are placed on the desk during data collection process for quickly
capturing. Only data in §6.4.5 are collected in the handheld setup. Additionally, all data are collected at room
temperature, accompanied by an indoor light source from a fluorescent lamp and a small amount of sunlight. We
align the data and extract the ROI for each fruit sample using processing methods depicted in §4.2, introducing a
total of 335 paired HSI-phone data with a resolution of 50 X 50 pixels. The ground truth sugar content of each
fruit sample is detected by a portable but invasive digital refractometer, named SM20 Saccharimeter [44]. We
juice each sample and then drop 3ml into the sample bin of SM20 to measure the sugar content by analyzing the
refractive index.

6.1.2  Training Scheme. To train the two-stage spectral reconstruction model, we split the images into 32 x 32
patches with a 16-pixel stride. The batch size is 64, and the initial learning rate is set as 10~ with a cosine learning
rate decay to 107, The hyperparameters a and c in the shrinkage loss are defined as 10 and 0.2 respectively,
which means we will penalize samples whose Lyrag is less than 0.2. The reconstruction model converges after
20,000 iterations. In addition, we split the image into 8 x 8 pixel patches and calculate the average spectra of each
patch to train the regression model. The model can quickly converge after 50 epochs with a batch size of 256. For
both models, we utilize the Adam optimizer, which is the most common optimizer.
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Fig. 15. Overall performance of FruitPhone and baselines on fruit sugar ~ SOTA reconstruction baseline.
content regression.

6.1.3  Evaluation Metrics. We use three commonly used metrics in hyperspectral imaging works to evaluate
our spectral reconstruction model: mean relative absolute error (MRAE), root mean square error (RMSE), and
peak signal to noise ratio (PSNR) [9, 33]. Among these, MRAE and RMSE evaluate the disparity between all
wavelengths of the reconstructed and ground-truth HSIs. Since our target is to use the reconstructed spectra for
fruit component analysis, we pay more attention to spectral-wise rather than spatial-wise errors. As for the brix
regression task, we exploit R-squared (R?), root mean square error (RMSE), and normalized mean absolute error
(NMAE) as evaluation metrics.

6.1.4 Baselines. We compare the performance of FruitPhone with the following schemes as baselines:

* RGB + NIR Values [7]. Since the first frame is illuminated by a white screen, which can provide spectral
information across all wavelengths, we take the first frame of smartphone video data as the RGB input and
utilize a multiple linear regression (MLR) model to predict the fruit sugar content. Additionally, considering
the fruit sugar content has many absorption bands in the near-infrared range, we add NIR values as inputs
to enhance this baseline.

e Color Spectra [58, 70]. Referring to previous works, we translate the captured video with k frames into a
k-channel color spectrum, i.e., calculate mean values across the RGB dimension. The NIR image is also
added to this baseline to enhance its capability. We then utilize the extreme learning machine (ELM) to
estimate the brix vaules, as ELM outperforms all other machine learning models in Table 1.

e Recon (RGB + NIR) [55]. We conduct spectral reconstruction on paired RGB and NIR images using
MST++ [9]. The reconstructed data is transformed into one-dimensional spectra and used to predict brix
values through our designed CNN-based regression model.

e Lab HSI. We input the HSI data collected by the expensive laboratory hyperspectral imager (i.e., Cubert
$185) into our CNN-based regression model to predict the brix values. This baseline is expected to have
better performance than FruitPhone, due to the high quality of the input data.

6.2 Overall Performance

We evaluate the system’s performance with 5-fold cross-validation on 335 samples. The data in the training set
and test set are from completely different fruit samples.

6.2.1 Brix Regression Performance. We begin by evaluating the sugar content regression capability of Fruit-
Phone and comparing it with baseline models. The overall prediction results are shown in Figure 15 - 17 and
Table 4.

Comparison with Baselines. Figure 15 illustrates the NMAE and R? of the prediction results respectively,
revealing important findings. Firstly, FruitPhone achieves significantly better forecast results compared to all
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Table 4. The sugar content estimation results of 39 types of food.

Fruit RMSE NMAE | Fruit RMSE NMAE | Fruit RMSE NMAE
Apple (#1) 1.7156 5.70% | Green Grape (#1) 1.6847 7.80% | Passion 3.1959 14.43%
Apple (#2) 2.2968 9.07% | Green Grape (#2) 1.3114 5.23% | Peach (#1) 2.1872 10.39%
Apple (#3) 3.095 13.14% | Guava 0.9351 4.04% Peach (#2) 0.6102 2.34%
Apple (#4) 3.339  14.03% | Jujube 1.2409 5.11% | Pear 2.3218 8.74%
Bananax 1.1740 4.97% | Kiwi 1.8047 8.04% | Pepino 1.958  7.7%
Black Grape (#1) 1.9671 8.79% | Kumquat 7.0421 31.54% | Persimmon 3.1218 11.42%

Black Grape (#2) 2.4378 9.01% | Lemon (Green) 0.7925 2.90% | Red Grape (#1)  2.1047 8.23%
Blood Orange 1.3554 5.45% | Lemon (Yellow)  1.9037 9.07% | Red Grape (#2)  2.0841 10.42%

Blueberry 3.0260 10.45% | Longan 1.9262 8.12% | Strawberry 1.0948 3.93%
Cherry 2.6624 9.51% | Loquat 4308 15.78% | Sugar Orange 2.8539 12.3%
Citrus 2.1050 9.55% | Mango 2.6802 11.25% | Tomato (Red) 0.9653 4.12%
Dekopon 3.1905 13.85% | Mulberry 2.6418 12.33% | Tomato (Yellow) 3.6453 14.63%
Grapefruit 1.1010 4.66% | Orange 1.3708 5.49% | Watermelons 2.4068 10.99%
225" % Lab HSI 1] 16 @ FruitPhone RGB+NIR w/o De- w/o Two- w/o Shrink-
es @ FruitPhone - Baseline (Recon) C‘i"f SP““‘_" noising  stage SR age Loss
& @14 ,?/.. MRAE | 0.2205 0.2864 0.2060
Z 1 512 Wl LY Y RMSE | 0.1257 0.1444 0.1224
=05 a4 1 1 24 q2% PSNR | 21.9 18.66 22.23
£ s £10 sWr SR e R® 0.6430  0.1265 0.6301
% P ”H NMAE | 9.56% 16.11% 9.60%
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True Brix (* Bx) True Brix (* Bx) Table 5. Ablation study of FruitPhone in

metrics of both reconstruction errors and
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(round).

baselines. Compared to the current SOTA method [55], the average R? of FruitPhone increases by 0.2260 and the
NMAE decreases by 4.12%. Even compared to a high-resolution and high-cost laboratory HSI system, FruitPhone is
only inferior with an R? value of 0.0891, demonstrating the effectiveness of the system. Secondly, we note that
both the SOTA reconstruction solution and our FruitPhone show great improvement over raw data without
reconstruction, which indicates the necessity of fine-grained spectral information when conducting in-depth
chemical component analysis. Additionally, we observe that even with many more channels than RGB images,
the color spectra achieve little improvement over RGB images. This is because although the color spectra mimic
monochromatic light using RGB LEDs, they cannot be directly used as absorption spectra for component analysis.
Consequently, it’s quite valuable to conduct spectral reconstruction over the screen color spectra. Last but not
least, from Figure 16, we can clearly observe that FruitPhone can estimate the brix values for fruits with various
sugar content levels. Overall, FruitPhone performs comparably to laboratory hyperspectral imaging solutions
and significantly outperforms state-of-the-art reconstruction-based methods.

Errors Analysis across Fruit Characteristics. Additionally, we carefully check the sugar content regression
errors for each fruit and analyze the factors influencing these errors. Table 4 presents the regression results for
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all fruit varieties. We analyze the potential fcators from the aspects of shapes, sizes, colors, and peel thicknesses.
Firstly, we find that the shape of the fruits—such as long strips (red grapes), triangles (strawberries, mangoes,
pears), and spheres (apples, oranges)—do not significantly affect the prediction results. This is because we utilize
our proposed detrend algorithm to mitigate the non-uniformity in spatial distribution caused by fruit shape.
Secondly, we compare the influence of color on the system’s predictions and the baseline results. Our dataset
includes fruits that appear very similar but have significantly different brix levels, such as oranges and blood
oranges. Despite their similarities in size, shape, color, and texture, their brix levels range from 9°Bx to 16.1°Bx.
Figure 17 illustrates the prediction performance for 20 orange samples (star markers) and 20 blood orange samples
(round markers). In this case, traditional colorimetric methods, like color spectra and RGB analysis, struggle to
differentiate these visually similar samples. In contrast, our system reconstructs fine-grained hyperspectral images
from RGB videos, allowing for in-depth spectral absorption analysis rather than relying solely on superficial
colorimetry for assessing fruit content. Thirdly, our dataset includes fruit samples with medium or thick peels,
such as grapefruits, lemons, and oranges, which have an approximate peel thickness of 1-1.5 cm. As the results
shown in Table 4, the prediction performance for these fruits is comparable to that for thin-skinned fruits, like
apples. This confirms the feasibility of the system in accurately predicting sugar content across different peel
thicknesses. Lastly, to illustrate the generalizability of the system in large fruit types, we add verification results
for two fruit types with significant shape differences from the original data set: bananas and watermelons. For
each fruit type, we prepare 10 different samples, with sugar content ranging from 4.7°Bx to 11.4°Bx, and conduct
tests using the system trained on the previous dataset with 37 fruit types. Table 4 presents the prediction results
for these two fruit types, showing an RMSE of 1.1740°Bx for bananas and 2.4068°Bx for watermelons. The
performance for these fruits aligns closely with that of the original dataset, further confirming the system’s
generalizability in predicting sugar content for larger fruit types.

Errors Analysis across Fruit Types. However, to our surprise, the prediction errors of fruits such as
kumquats, yellow tomatoes, passions, and loquats are even larger. These fruits do not have obvious commonalities
in physical structure and the spectral reconstruction errors are not significant. By comparing with the results of
laboratory-level HSI predictions, we find that even with more accurate HSI predictions, the results of these fruit
varieties are not ideal, which is related to the chemical interfering substances they contained. Taking kumquats
as an example, we observe that the system’s prediction for kumquats is very poor, with RMSE exceeding 7°Bx
(compared to 4.8707°Bx RMSE by laboratory-level HSI). This is because the high concentration of limonene
on its surface generates a strong absorption peak at 1380 nm, which may cover the absorption characteristics
of glucose [36, 74]. To solve this problem, fruit-dependent model may be needed for specific fruit types. After
two-stage reconstruction, we can identify the fruit type by object detection method and then apply corresponding
fruit model.

6.2.2 Spectral Reconstruction Error. Table 3 shows the reconstruction error of FruitPhone compared to the
state-of-the-art spectral reconstruction model, MST++ [9]. The baseline model uses paired RGB and NIR image
as input, which only has four channels. While FruitPhone employs screen spectra with 45 frames along with
the paired NIR image, totaling 46 input channels. The table clearly shows a significant improvement in all
three metrics for FruitPhone over the baseline. This enhancement is attributed to the higher number of input
channels in FruitPhone, allowing for more precise and accurate reconstruction relationships, consistent with our
feasibility study findings. Additionally, we note that both the baseline model and our reconstruction model achieve
relatively low PSNR values. This is due to the fact that we only input the central area of the fruit images into the
reconstruction models, which lacks sufficient spatial characteristics for the models to learn from. However, since
we rely solely on spectral features for brix estimation, the poor spatial reconstruction quality does not affect the
overall performance of our system.
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6.2.3 Model Overhead. In addition, we present the floating-point operations per second (FLOPS) and total
parameters for both our two-stage reconstruction model and the baseline in Table 3. A comparison with the
baseline reveals that FruitPhone delivers significantly improved reconstruction performance without a substantial
increase in computational load. Although FruitPhone employs a complex network architecture, we have reduced
the number of transformer blocks from the original MST++ model. As a result, our proposed two-stage spectral
reconstruction achieves enhanced performance on the screen spectral reconstruction task without imposing
excessive computational demands.

6.3 Ablation Study

We then investigate the designs of FruitPhone by conducting ablation studies to demonstrate the effectiveness of
each design. Table 5 presents the results of our ablation study.

(1) W/O De-noising Module. Compared to the system with a de-noising module, i.e., spatial detrending and
white-black calibration, the model without de-noising module has a decrease in both reconstruction and brix
regression accuracy. This is because ambient interference and distance shift are unique for each sample, and if
these noises are not eliminated, the generalization error between the training samples and the test samples will
be caused.

(2) W/O Shrinkage Loss. We can see that without shrinkage loss, the spectral reconstruction error only
slightly increases but the brix regression performance decreases obviously. This is because the shrinkage loss
can reduce the reconstruction error of a small number of difficult samples in the reconstructed model, which
does not significantly lower the overall reconstruction error. However, these "hard samples," which exhibit large
reconstruction errors, greatly affect the sugar estimation task. For instance, the model without shrinkage loss
performs even worse in brix estimation than the model lacking a de-noising module, despite having a smaller
reconstruction error. This underscores the importance of incorporating shrinkage loss.

(3) W/O Two-Stage Spectral Reconstruction. Additionally, we remove the spectral translation step and directly
input paired video frames and NIR image into the state-of-the-art SR model, i.e., MST++. Unlike the baseline,
which has only four input channels, the model in this ablation study treats the 45 frames of the RGB video
as 45 spectral channels. From the results shown in Table 5, we can find that the system introduces a terrible
reconstruction performance, even worse than the baseline with only four channels. This is because the frames
and spectral channels of the RGB video are not physically equivalent. When video frames and near-infrared
images are used directly for reconstruction, the model struggles to learn the mapping between the input spectra
and the hyper-spectra. This further emphasizes the necessity of converting the screen spectrum into the real
spectrum space prior to spectral reconstruction.

6.4 Differing Conditions

We then evaluate FruitPhone under various experimental and environmental conditions and compare it with
the baseline using SOTA reconstruction solutions. Figure 18 shows all conditions that we considered, including
the variation of the distance from the fruits, angles, temperatures, ambient illuminations and users. We train
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Fig. 19. Brix regression error of FruitPhone and the SOTA reconstruction solution under various capturing distance, angle,
and sample temperatures.

both the reconstruction and regression models using the dataset collected under default settings in §6.1.1. To
assess the system’s robustness, we use 16 fruit samples from four typical fruit types, i.e., apple, orange, tomato,
and black grape. We collect data under various conditions to evaluate FruitPhone’s performance across these
different scenarios.

6.4.1 Varying Data Capturing Distance. Although we recognize the system to be used at a capturing distance
of 10 cm, it’s difficult for users to exactly meet this. Thus, we investigate the performance of FruitPhone by
capturing the sample at different distances to the smartphone, including 5 cm, 10 cm, and 20 cm. The results are
depicted in Figure 19. We can find that the performance of FruitPhone is consistently better than the baseline.
However, with the sample getting too far from the smartphone camera, the performance of FruitPhone slightly
decreases. This is because when the shooting distance is too far, the intensity of the light hitting the surface of
the sample is weak, so the quality of the collected data is poor, resulting in a decline in performance. One idea
to solve this problem is to increase the luminous intensity of the mobile phone screen, but this may lead to an
increase in the energy consumption of the mobile phone. Therefore, we recommend that the use distance of
FruitPhone be within 15cm, which is very easy to achieve.

6.4.2 Varying Data Capturing Angle. Users may capture the samples at different angles causing various light
field distributions on the fruit surface. Thus, to evaluate the robustness of FruitPhone under various capturing
angles. We consider the central area and location relative to the circumference of the smartphone, each containing
approximately 20° angles with the center of the smartphone’s front-camera. Figure 19 demonstrates the results,
which indicate that FruitPhone is robust to various capturing angles. This is because we utilize a spatial de-
trending approach to eliminate the unevenness of the light field distribution. Therefore, the processed data can
produce stable spectral data in the face of incident light from different angles.

6.4.3 Varying Fruit Temperature. Temperature is a common factor that may influence the spectral features of
fruit samples. In real cases, some fruits are refrigerated at less than 15°C to keep them freshness. Thus, it’s
necessary to investigate the robustness of FruitPhone when predicting sugar content values from fruit samples
under different temperatures. We simulated the possible temperature in the real world and placed the samples in
the refrigerator for 5 hours (about 10-20 degrees) and 18 hours (below 10 degrees). Figure 19 shows the results of
FruitPhone measuring the sugar content of fruit samples at different temperatures, from which it can be seen
that FruitPhone is more adaptable to different temperature conditions than the baseline. Even if the sample is
refrigerated for a long time, the performance is relatively stable.

6.4.4 Varying Ambient Illumination. Ambient light can interfere with the readings of smartphone cameras,
especially the RGB camera. Considering the emission spectrum of various light sources is different, which may
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Fig. 20. Brix regression performance of FruitPhone and the SOTA reconstruction solution for different ambient illumination
conditions and users operating FruitPhone.

bring diverse influence to the smartphone camera, we investigate FruitPhone’s robustness under various realistic
lighting conditions, including different intensities of light in indoor environments, as well as two lamp types. From
the results presented in Figure 20, we can observe that, FruitPhone’s performance under different light conditions
is stable. This benefits from the white-black calibration step that subtracts the ambient interference during the
data preprocessing pipeline. Additionally, we find that FruitPhone’s performance consistently overwhelms the
baseline in all light conditions.

6.4.5 Varying Users. Besides the shooting distance and angle that can be quantitatively evaluated, there are
many user habits, such as jitter, rotation, etc. To assess the system’s usability across different users, we invite five
participants (two females and three males) to use FruitPhone implemented on the Google Pixel 4 XL smartphone.
Before data collection, participants are briefed on FruitPhone’s operation and provided with recommended
shooting parameters (as detailed in § 6.1.1). Each user captures images of two fruit types (apples and oranges) in
an indoor environment at room temperature (17-23°C), with five samples per fruit. To ensure data reliability,
every sample is scanned twice. Figure 20 shows the results for all users. We can see that FruitPhone does not
vary much in performance from user to user. We find that user#4 has less hand movement during data collection,
so the results are slightly better than those of other users. We can increase the alignment of video frames during
data processing to eliminate the effect of jitter during video shooting.

6.4.6 Varying Scenes. Although considering several factors separately, real scenarios can be uncontrollable
with compounding factors, including both sample angle, distance, and user jitter, as well as ambient conditions.
Therefore, we test FruitPhone in four uncontrolled real-world scenes: (1) the supermarket with bright indoor
fluorescent illumination, (2) the dining hall with both indoor light and sunlight from windows, (3) the outdoor
park during the day with bright sunshine, (4) the outdoor park during the night with moonlight and street lamp.
These scenarios are selected to represent different combinations of environmental illuminance (500-7500 lux),
temperature and humidity. We analyze three types of fruits (apples, oranges, and citrus), which have nine different
brix values (8.6-14.4 °Bx), and each type of fruit is measured twice. The samples are refrigerated for different
durations and then exposed to the four scenarios, leading to diverse sample temperatures. As shown in Figure 21,
FruitPhone maintains a relatively stable performance of RMSE < 2.0°Bx in all scenarios. It is worth noting that
through our black and white calibration algorithm, the increase of error in high-illumination scenarios (>7500
lux) is mitigated, limiting RMSE to 1.92 °Bx under extreme light interference. In the outdoor night scene, where
samples are exposed to long-term refrigeration (10 hours at 4°C), the results show a slightly higher deviation
(RMSE=1.98°Bx). This might be due to the change in near-infrared absorption characteristics at suboptimal
temperatures. We plan to address this recognized limitation through temperature-compensated spectral modeling
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Fig. 21. Brix regression performance of FruitPhone and the SOTA reconstruction solution under real-world scenes with
uncontrolled compounding factors, e.g., angle, distance, temperature, user jitter, and ambient illumination.

in future work. Importantly, under typical supermarket conditions (20-25°C, 500-2500 lux), FruitPhone achieves
stable accuracy (RMSE=1.12°Bx), confirming its practicality in real-world fruit selection scenarios.

6.5 Further Discuss

Since the spectral reconstruction is related to the smartphone hardware parameters, such as screen light sources
and camera sensitivity. We further discuss the generalization of the system to different smartphone setups. As
shown in Figure 18, we validate FruitPhone on different smartphones and various screen illumination patterns.

6.5.1 Varying Smartphones. Different smartphones have diverse hardware parameters, such as screen types,
RGB camera sensitivity, and video processing methods. These variations may impact the data quality of the
collected video frames. This issue can be addressed through model fine-tuning or transfer learning. Given that
screen types may be the most significant factor influencing data quality, we choose three smartphones with
varying screen technologies, i.e., LCD, OLED, and AMOLED and test the generalization capability cross different
smartphones. Table 6 lists the parameters of three smartphones, which are different in both screen and camera
parameters. We use the three smartphones to collect video data for 135 fruit samples. Both the reconstruction and
regression models are pre-trained using 80% of the data collected by Google Pixel 4 XL, and then fine-tuned using
the corresponding data collected by the other phone. We freeze all the model except the last layer of each channel
translator and the last layer of the reconstruction module. Note that since the OnePlus and IQOO smartphones
can not access of the NIR camera, for fair comparison, we only use RGB video for training and fine-tuning of the
reconstruction model. Table 6 shows the results after transfer learning. We can observe that after fine-tuning, the
reconstruction errors on the new smartphone only slightly increase, which does not influence the sugar regression
performance too much. Additionally, we notice that the OnePlus smartphone exhibit the largest reconstruction
error. This may because it applies a different video processing method to the other two smartphones, which will
adjust the color and brightness of the video frame by frame, generating fluctuation in the collected video frames.
This issue could be mitigated by incorporating an additional processing step into the data collection procedure
for the OnePlus smartphone.

6.5.2 Varying Screen Monochromatic Light Patterns. We then discuss how the number of input color spectra
channels affects the spectral reconstruction performance. We evaluate the two-stage spectral reconstruction
using phone spectra with different channel numbers, i.e., 3, 15, 30, and 45. The model is trained on 80% of
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Table 6. Comparing the parameters across three smartphones and FruitPhone’s performance on them after fine-tune.

Screen Screen Refresh Camera HDR 2

Type Resolution Rate Resolution Support MRAE  RMSE R NMAE
Gf)ogle OLED 3040x1440 90Hz 8MP HDR10 0.1954  0.1032 23.15 | 8.90%
Pixel 4XL
OnePlus Fluid
8 Pro AMOLED 3168x1440 120HZ 16MP HDR10+ 0.2120  0.1476  20.26 | 9.97%
1IQ00 79X LCD 2400x1080 120HZ 16MP HDR10 0.2068  0.1353  20.79 | 9.25%

Numbers ‘ Recon Regression
3 15 30 45 ‘ MRAE RMSE ‘ R? RMSE

MRAE | 0.1518 0.1461 0.1451 0.1441 Uniform ‘ 0.1557 0.0767 ‘ 0.8713 1.7219
RMSE | 0.0844 0.0838 00836 0.0781 Characteristic | 0.1563 0.0767 | 0.8873 1.5908

Table 7. Spectral reconstruction errors of Fruit- Table 8. Spectra reconstruction and brix regression performance of
Phone when using various numbers of input chan-  FruitPhone using various screen patterns.
nels.

the collected 200 paired spectra and tested on the other 20% of the data. Table 7 shows the MRAE and RMSE
of the reconstructed spectra on the test dataset. We can observe a decreasing trend of RMSE loss with more
channels used for training the model. Furthermore, we also evaluate how monochromatic pattern influence the
usability of FruitPhone , by modifying the screen color pattern. We select a series of characteristic wavelengths
according to the wavelength selection methods. Then the light mode of the phone screen is set according to
the selected characteristic wavelength. Therefore, the phone screen will illuminate more time in the sugar-
related wavelengths. Table 8 shows the reconstruction performance of FruitPhone using uniform pattern and
characteristic pattern from the same 5-fold cross validation on 200 fruit samples. The results are valuable for
further discussion, as we find that the characteristic pattern has slightly larger reconstruction errors, but achieves
better brix regression performance. This is because the HSI data has redundancy between bands, and not all
bands are useful when applied to the sugar regression task. Therefore, although the overall reconstruction error is
larger, the reconstructed spectrum performs better on the bands related to the sugar degree, so there is a chance
to obtain better prediction results. However, in order to preserve the potential of FruitPhone to extend to more
detection indicators in this paper, we use an unfiltered uniform spectrum as input.

7 RELATED WORK

In this section, we briefly review existing works related to portable fruit quality detection, smartphone-based
spectral systems and spectral reconstruction technology.

7.1 Fruit Quality Detection

In recent years, various research solutions have emerged to facilitate the detection of fruit quality, particularly
focusing on parameters like sweetness, often measured in brix. This is crucial for consumers who want to ensure
they are purchasing high-quality produce.

Many studies have explored the use of image processing and machine learning algorithms to analyze fruit
characteristics, such as color, texture, and shape, to determine ripeness and freshness [31, 48, 52]. For instance,
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some apps utilize deep learning techniques to classify fruit quality based on user-uploaded photos [52]. However,
image-based solutions can only access superficial characteristics which is not sufficient for fruit in-depth quality
assessment, e.g., sugar content, ripeness, or acidity detection [38, 72]. In addition, some research tries to explore
other sensing modalities like ultrasound [6, 17], radio frequency [1, 37] to detect fruit quality parameters in
a non-invasive manner. Although they can obtain accurate accuracy, these systems require particular signal
transmission and receiving systems that cannot be easily supported by accessible devices.

Spectrometers have gained attention as a more direct method for assessing fruit quality. Since the spectrometer
can penetrate the fruit deeper and obtain fine-grained spectral characteristic of the components inside the fruit,
it allows users to measure parameters like sugar content and acidity more accurately. For instance, some portable
spectrometers, such as SCiO [54] and the NIR handheld spectrometer [16], can provide real-time analysis of
fruit quality parameters. While they offer high accuracy, their cost can be prohibitive for average consumers,
often exceeding several hundred dollars. Some recent studies try to achieve smartphone-based spectral imanging
systems to obtain high accuracy with low-cost, like MobiSpectral [55]. The key idea is to reconstruct full spectral
information from smartphone captured three channel RGB/NIR images. However, due to the low quality of
smartphone data, the spectra reconstructed by these methods perform poorly in accuracy and stability, and can
only support roughly qualitative classification tasks, such as the classification of organic/inorganic fruits.

7.2 Smartphone-based Spectral Systems

Smartphones have become effective tools for spectral analysis due to their integrated cameras and optical sensors,
such as complementary metal-oxide semiconductor (CMOS) sensors. Smartphone-based spectral systems can be
categorized into three main types: colorimeters, spectrometers, and fluorimeters [14].

First, the individual color outputs of smartphones can function as colorimeters, enabling applications like water
quality assessment [60], air quality monitoring [68], and bioanalytical testing [62]. Additionally, incorporating
optical dispersion components, such as diffraction gratings, can enhance the spectral resolution of smartphone
data [42, 43, 53]. Some studies have also developed fluorimeters using the smartphone’s CMOS camera [11, 13, 46].
However, these approaches often require additional hardware, which can limit accessibility and reduce user
willingness to engage with the system.

Recent research has focused on achieving optical analysis using unmodified smartphones [23, 55, 58], lever-
aging data processing algorithms to improve data quality. For instance, He et al.[23, 24] employed a spectral
reconstruction algorithm with a standard smartphone to perform hyperspectral imaging for analyzing skin
morphology and monitoring hemodynamics. MobiSpectral[55] achieved hyperspectral imaging for classifying
organic and inorganic fruits using only the built-in RGB and near-infrared cameras of smartphones. While these
methods do not require additional hardware, they reconstruct hyperspectral images directly from RGB data,
which limits accuracy and complicates fine-grained detection tasks. Additionally, Song et al. [57, 58] proposed
using smartphone screens to generate spectra for food authentication, sharing a similar concept with this work.
However, the spectra collected under screen illumination differ physically from real spectra, making them
unsuitable for direct qualitative object detection.

7.3 Spectral Reconstruction Algorithms

Hyperspectral imaging (HSI) is a powerful technology that combines spectroscopy with imaging capabilities.
However, it faces challenges related to portability and affordability for most users. Recent efforts have focused on
developing computational methods to reconstruct full hyperspectral data from limited spectral measurements,
thereby reducing the reliance on expensive and bulky hardware. Some approaches involve designing specific
reconstruction algorithms that rely on hand-crafted hyperspectral priors [3, 20, 35]. These methods often require
specialized expertise and involve numerous parameters, making them difficult to apply in broader contexts.
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Additionally, deep learning techniques, particularly convolutional neural networks (CNNs), have been utilized
to learn the mapping from RGB images to hyperspectral images [2, 33, 56, 66, 67, 75]. For instance, Li et al.[33]
integrated spectral response priors into an adaptive weighted attention network. More recently, transformer-based
architectures have demonstrated superior performance over CNNs in spectral reconstruction tasks. MST++[9]
introduced a spectral-wise multi-head self-attention block to capture non-local self-similarity and long-range
dependencies during the reconstruction process. Yao et al. [69] proposed a spatial-spectral cumulative-attention
transformer designed for high-resolution hyperspectral image reconstruction.

However, these methods primarily focus on reconstructing high-resolution hyperspectral images from compres-
sive spectral images, such as RGB and multispectral images, which exhibit a strong correlation with hyperspectral
data. In the context of FruitPhone, the limitations of smartphone cameras and screen light sources result in spectral
data that is not only compressed but also subject to color transformation. Consequently, previous reconstruction
methods cannot be directly applied.

8 DISCUSSION
In this section, we shall discuss the limitations and future extensions of FruitPhone.

Different Smartphone Types. In theory, the smartphone-based spectral reconstruction is intrinsically linked
to the parameters of smartphone hardware. This paper demonstrates good performance of FruitPhone on a Google
Pixel 4 XL smartphone. However, variations in screen types among different phones (such as LCD and OLED),
camera response, and image processing algorithms can result in disparate data readings, thereby impacting the
reconstruction performance. Among these factors, differences in screen characteristics (including the central
wavelength of RGB LEDs and sensor array displacement) are most pronounced and likely to affect data quality.
In § 6.5.1, we have shown that through fine-tuning with a small data set, FruitPhone can achieve comparable
reconstruction errors and sugar regression accuracy across different smartphones. In addition to the fine-tuning
solution, we envision the potential for other unsupervised generalization methods that could facilitate portability
between new smartphones. For instance, we could develop a normalization algorithm that translates images
from various devices to conform to a standard format prior to their input into a unified reconstruction model. We
consider this an avenue for future exploration.

Non-NIR Smartphones. Although FruitPhone has achieved a validation accuracy comparable to that of
professional devices, we acknowledge that FruitPhone cannot be universally applied to all mobile phones. This
limitation arises because FruitPhone utilizes the NIR sensor present in the mobile phone during the analysis
process, but not all smartphones are equipped with this sensor. The evaluation in Table 6 shows that sugar
prediction accuracy decreases on non-NIR smartphones, as the near-infrared band (700-1100 nm) provides crucial
spectral features of chemical bonds like C-H and O-H. To improve near-infrared detection in these devices, we
can optimize both hardware and algorithms. For hardware, integrating affordable NIR sensors into mobile phones
is a possibility [12, 28]. For algorithms, we can use the correlation between spectral bands and information from
the visible light band to infer near-infrared spectral features for ingredient prediction [5, 49].

Thick-Skinned Fruit. Analyzing thick-skinned fruits presents challenges due to the limited penetration depth
of visible and near-infrared light. In this work, our dataset contains fruit samples with varying peel thickness
ranging from 0.01 to 1.5 cm. Previous studies have examined the penetration depth of light in the 500-1000
nm can reach most fruits, including thin-skinned fruits like apples[32, 51] and medium-skinned fruits such as
citrus [15], as well as watermelons [4], can be analyzed non-invasively using near-infrared light. However, for
thick-skinned fruits like pomelo and pomegranate, this light is insufficient to penetrate the skin, resulting in
inaccurate predictions regarding the internal quality and nutrient content of the fruit [15]. One potential solution
is to investigate the relationship between the nutrient content of the peel and the pulp by studying biochemical
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pathways and nutrient transfer mechanisms. This analysis could help predict the nutrient content of the flesh
based on the spectral absorption characteristics of the skin.

Extension Applications. Given that FruitPhone enables more accurate spectral reconstruction, it facilitates
extensive analysis tasks that require fine-grained spectral information, such as a dulteration d etection and
nutritional analysis. By incorporating additional training data to enhance the spectral reconstruction model and
deploying diverse application-specific regression models, FruitPhone has the potential to transform smartphones
into new spectral analysis workstations.

9 CONCLUSION

This paper introduces FruitPhone, a smartphone-based spectral imaging system that can accurately quantify
the sugar content of various fruits. By leveraging the smartphone screen to simulate multiple monochromatic
light sources and employing a robust two-stage spectral reconstruction algorithm based on transformer modules,
FruitPhone successfully enhances spectral resolution and reliability. Additionally, FruitPhone addresses environ-
mental variability and spatial inconsistencies by using a white-black calibration and detrending algorithm for
high-dimensional spectral images. Our results demonstrate that FruitPhone achieves a high degree of accuracy,
closely rivaling expensive desktop spectrometers while being more affordable and user-friendly. Ultimately,
FruitPhone empowers users to effortlessly and accurately evaluate fruit quality and sugar content in real-time,
thereby enhancing their purchasing decisions and promoting healthier eating habits.
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