IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, AUGUST 2025 1

FreshSpec: Sashimi Freshness Monitoring with
Low-cost Multispectral Devices

Yinan Zhu*

Abstract—Monitoring sashimi freshness, i.e., histamine levels,
in showcases poses a critical challenge for sushi restaurants
and fresh food stores. Current histamine monitoring methods
involve labor-intensive chemical experiments or expensive de-
vices, making affordable on-site monitoring difficult. This paper
proposes FreshSpec, a low-cost and automatic spectral imaging
system capable of precisely monitoring histamine levels in sashimi
with minimal human intervention. The low concentration of
histamine, combined with the potential for other ingredients to
mask its spectral characteristics, complicates precise histamine
level predictions using coarse or redundant spectral data from
low-cost devices. To address this issue, FreshSpec employs an
innovative feature-wise spectral reconstruction (SR) framework
that effectively eliminates irrelevant and redundant data while
preserving critical histamine-related spectral features. Specifi-
cally, we redefine the SR reconstruction target by utilizing fea-
tures derived from the encoder of the spectral foundation model
that is enhanced to focus on histamine-related spectral features.
Furthermore, inspired by the monotonic accumulation properties
of histamine over time, we propose a histamine regression
model with unsupervised continual adaptation to new sashimi
samples during practical deployment. Experimental results from
240 samples of salmon, tuna, and snapper demonstrate that
FreshSpec achieves an R2 of 0.9319 and an RMSE of 3.101
mg/100g, comparable to laboratory spectral imaging systems,
while outperforming baseline schemes with a 46.95% RMSE
reduction and a 0.1631 R2 improvement.

Index Terms—Meat Freshness, Spectral Large Model, Feature-
wise Spectral Reconstruction

I. INTRODUCTION

ASHIMI is popular worldwide, but there are always

concerns about its freshness and safety. Data show that
histamine poisoning constitutes 37% of seafood-related ill-
nesses reported to the Centers for Disease Control and Preven-
tion (CDC) [1]. The toxic ingredient, histamine, can rapidly
increase to a lethal level in a few hours if not handled or stored
properly [2], [3]. However, among the entire food supply
chain, the end of the nodes such as sushi restaurants or fresh
food stores are particularly vulnerable to compromising the
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Fig. 1. Illustration of FreshSpec’s working scenario.

freshness and safety of sashimi due to fluctuating showcase
temperatures [4]-[6]. As shown in Figure 1, sashimi samples
can exhibit varying histamine levels simultaneously due to
differences in handling and temperature. Therefore, merchants
seek to monitor the histamine levels of the samples to obey the
regulation and protect profits. For example, sashimi samples
with histamine levels exceeding local regulations must be
discarded, while those with safe but relatively high histamine
levels should be sold first.

Since histamine is colorless and odorless, and even haz-
ardous histamine levels are pretty low, e.g., 5 mg/100g for
U.S. Food and Drug Administration (FDA) safety level [7],
existing histamine testing methods often involve high costs
and complex procedures, which pose challenges for small
sushi restaurants and fresh food stores. Most works require
high-cost devices such as laboratory high-performance lig-
uid chromatography [8], [9] or hyperspectral imaging (HSI)
cameras [10], [11] to detect histamine, which are unaf-
fordable for average users. Low-cost solutions like enzyme-
linked immunosorbent assay kit [12], [13] or electrochemical
sensors [14], [15] are also labor-intensive due to chemical
operations and destructive to sashimi, which cannot achieve
automatic and passive monitoring. Some recent works [16]-
[18] try to achieve cost-effective and automatic daily food
monitoring by using spectral reconstruction (SR) techniques,
making low-cost spectral cameras possible to achieve similar
sensing performance as laboratory-grade HSI cameras.

However, because of the low concentration of histamine lev-
els in the sashimi samples, its spectral characteristics are easily
overwhelmed by other ingredients such as protein, whose
spectral information is irrelative and redundant to histamine.
Thus, it’s essential to conduct feature selection on the HSI data
to extract the most useful features that related to histamine
prediction. Unfortunately, previous solutions [16]-[18] tend
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Fig. 2. Comparison of existing spectral reconstruction solution and our
feature-wise spectral reconstruction solution.

to reconstruct complete hyperspectral data without filtering
out redundant or irrelevant information and even inevitably
introduce reconstruction errors during the reconstruction phase
(as shown in Figure 2(a)). From such low-quality reconstructed
data, it’s hard to acquire effective features for histamine
prediction.

To narrow this gap, we try to filter out redundant and
irrelevant information during the spectral reconstruction pro-
cess. Figure 2 compares the process of previous spectral
reconstruction solutions and our solution. We can apply feature
extraction on target HSI before SR and retain only histamine-
related features for reconstruction, avoiding reconstructing
redundant and irrelevant information. By doing so, we can
significantly enhance the correlation between the reconstructed
data and histamine values, thereby improving its effectiveness
for histamine prediction. However, given the subtle spectral
features of histamine, this requires fine-grained feature ex-
traction capability, which cannot be adequately addressed by
traditional feature selection methods [19], such as principal
component analysis. Inspired by the success of foundation
models across various fields [20]-[23], which demonstrate
their capability for in-depth feature extraction, we see an
opportunity to introduce a spectral foundation model (SFM)
into the SR process to obtain more informative features.

Nevertheless, to transform this idea into a practical system,
we still face several challenges:

o Challenge 1: Extract Informative Histamine-Related
Spectral Features. Although previous SFMs [23]-[25]
achieves great performance in remote sensing applications,
it is trained with remote sensing images, such as trees
and fields, whose spectral characters evidently differ from
sashimi’s and are not related to histamine. When we directly
introduce the SFM’s encoder in spectral reconstruction,
it’s hard to extract informative histamine-related spectral
features, leading to poor reconstruction performance and bad

histamine prediction results.

o Challenge 2: Generalization Gap to New Samples. Due
to the differences in colonies and enzymes inside individual
sashimi, there may exist large spectral feature differences
among different sashimi samples. It is difficult for the base
regression model to obtain fine prediction results for new
samples collected over time.

To address the above challenges, we present FreshSpec, the
first passive and low-cost system for accurate histamine mon-
itoring that requires zero human intervention, utilizing only a
commercial multispectral imaging (MSI) camera deployed on-
site (as shown in Figure 1). Specifically, FreshSpec achieves
this through two novel designs. Firstly, instead of reconstruct-
ing the full HSI that contains irrelevant and redundant data,
FreshSpec exploits a novel feature-wise SR framework that
focuses solely on critical histamine-related spectral features,
thus greatly improving the quality of reconstructed data for
further histamine regression. To achieve this, an SFM encoder
is introduced into the reconstruction process and trained with
a contrastive scheme to enhance its capability for extracting
sashimi samples and histamine-related features. Secondly, we
notice the monotonic accumulation properties of histamine
over time and utilize this property to design an unsupervised
model improvement scheme. This scheme ensures the model
adapt to new samples using only few unlabeled data, and thus
can minimize the generalization gap. Specifically, FreshSpec
utilizes unsupervised continual learning to make the model
continually self-improve to new sashimi samples during prac-
tical deployment through constraints on the relationships of
pseudo-labels.

We implement the prototype of FreshSpec with a com-
mercial MSI device costing less than $100, and evaluate its
histamine regression performance on 240 sashimi samples
covering various sashimi types, including salmons, tunas and
snappers, as well as various histamine levels ranging from 0-
70 mg/100g. Results show FreshSpec can achieve an average
R2 value of 0.9319 and RMSE value of 3.101 mg/100g,
which is comparable to lab-level HSI performance and greatly
outperforms the baseline schemes (reducing 2.744 mg/100g in
RMSE and improving 0.1631 in R2). Moreover, FreshSpec is
robust to various environmental changes, including capturing
locations, heights, illumination, sashimi size and thickness.

In summary, our main contributions are as follows:

« We introduce FreshSpec, the first passive and low-cost MSI-
based system designed to accurately monitor the freshness
level of sashimi (i.e., histamine) in display showcases.

o« We propose a novel feature-wise spectral reconstruction
scheme that effectively reconstructs histamine-related spec-
tral features by leveraging a fine-tuned spectral foundation
model. Meanwhile, we present an unsupervised model im-
provement scheme for adapting the regression model to
unseen sashimi samples over time.

o We evaluate FreshSpec’s performance over 240 samples of
salmon, tuna, and snapper. The results demonstrate the effec-
tiveness of FreshSpec with R2 of 0.9319 and RMSE of 3.101
mg/100g, greatly outperforming baseline schemes with a
46.95% RMSE reduction and a 0.1631 R2 improvement.



e Our datasets, which include a reconstruction dataset com-
prising 712 paired MSI-HSI images and a regression dataset
containing 1,440 MSI-histamine data groups, will be made
openly accessible in [26] upon acceptance of this paper.

The rest of our paper is organized as follows. Section
IT overviews the related works of histamine detection and
HSI. Section III introduces the system designs of FreshSpec
including feature-wise spectral reconstruction and regressor’s
unsupervised continual adaptation. Section IV presents the im-
plementation details and Section V presents the performance
evaluation results of FreshSpec. We discuss FreshSpec’s lim-
itations and potential extensions in Section VI and conclude
our paper in Section VII.

II. RELATED WORK

Before we dive into the details of our design, we review
the background and existing works related to fish histamine
detection, hyperspectral reconstruction, spectral foundation
model, and unsupervised continual learning, in this section.

A. Histamine Detection.

Histamine Management. Histamine is a toxic metabolite
produced by certain bacteria during the spoilage and fer-
mentation of fish. Since hazardous histamine levels do not
affect the food’s taste or appearance, control measures must
be implemented throughout the food chain. The most effec-
tive method for controlling histamine production is time and
temperature management, such as refrigeration and freezing.
Without proper temperature control, histamine levels can rise
rapidly. For instance, toxic levels of histamine can form in 2
to 3 hours in fish stored at 20 °C or greater [2]. However,
in settings like sushi restaurants or fresh food stores, where
maintaining refrigeration or freezing conditions is challenging,
the freshness and safety of the sashimi samples can not be
ensured.

Moreover, as mentioned in FDA guidance document [27],
once the fish histamine is formed, it cannot be removed by
subsequent activities, such as washing, freezing or heating.
Thus, histamine will accumulate monotonically in sashimi
over time. Here “monotonic” means that histamine in sashimi
will not decrease over time, which is irrelevant to the increase
speed. For example, freezing can limit the histamine growth
rate but the formed histamine value will not decrease.

Histamine Detection Methods. As shown in Table I, early
detection methods primarily used high-performance liquid
chromatograph [8], [9], colorimetric assays [28] or mass spec-
trometry techniques [29], which require expensive laboratory
instruments and reagents to obtain reliable results through
chemical experiments. The laboratory procedures are time-
consuming and costly. More recent technologies have emerged
for histamine analysis such as electrochemical biosensors
[14], [15], enzyme-linked immunosorbent assay kit [12], [13],
fluorescence [30], and hyperspectral imaging [10], [11]. While
using electrochemical biosensors like nonenzymatic sensors,
assay kits or fluorescence probes is low-cost, these methods
still require several chemical operations, limiting their acces-
sibility for average users. They need destructive sampling for
each sashimi to conduct chemical experiments, and thus with

TABLE I
COMPARISON OF OUR SOLUTION FRESHSPEC WITH EXISTING HISTAMINE
DETECTION TECHNOLOGIES

Method Cost Cheml.cal Accuracy
Operations
Chromatography [8] High Yes ng/100g-level
Mass Spectrometry [29] High Yes ng/100g-level
colorimetric Assays [28] | High Yes ng/100g-level
Hyperspectral Imaging [10] | High No mg/100g-level
Electrochemical Sensor [14] | Low Yes ug/100g-level
Fluorescence Sensor [30] | Low Yes ug/100g-level
Enzyme-linked
Immunosorbent Kits [12] Low Yes mg/100g-level
FreshSpec (ours)

(Multispectral Imaging) Low No mg/100g-level

labor-intensive operations. So, these methods cannot automati-
cally monitor the histamine levels. Hyperspectral image (HSI)
technology could be the best choice to provide passive and
automatic histamine monitoring, which doesn’t need any of
the sample preparation and chemical operations. In theory, HSI
can identify -CH bonds generated by decarboxylation during
histamine production [31], [32]. However, existing HSI-based
histamine monitoring product [32] relies on a complicated
and highly expensive hyperspectral camera, i.e., >$10000,
hindering the accessibility to average users at the end of the
food chain.

In conclusion, currently there is no histamine detection
method that is both low-cost and automatic (without any
chemical operations), thus unavailable to achieve on-site mon-
itoring in sushi restaurants or fresh food stores. In this paper,
we present FreshSpec to enable this, by utilizing low-cost and
non-invasive MSI technology for automatic monitoring. With
well-designed feature-wise spectral reconstruction, FreshSpec
can achieve good detection performance approaching HSI.

B. Hyperspectral Reconstruction.

Spectral reconstruction (SR) is a promising way to solve the
high cost problem of HSI. As illustrated in Figure 3, spectral
reconstruction algorithms can reconstruct the hyperspectral
information from limited spectral measurements, such as MSI
images, RGB images [33] which can be obtained by low-
cost devices. Generally, they fall into two categories: prior-
based and data-driven methods. Prior-based methods [34], [35]
utilize statistical information from hyperspectral images, such
as sparsity, spatial structure similarity, and spectral correlation,
to identify plausible solutions. In contrast, data-driven meth-
ods [36]-[40] leverage the abstract features found in large-
scale MSI and HSI image datasets to achieve more accurate
results. The spectral reconstruction technology, in recent years,
has been used and shown good performance in daily food
monitoring tasks like organic fruit classification [17], nutri-
ents estimation [16], and meat fraud identification [18]. By
collecting MSI-HSI pairs of food samples to train a spectral
reconstruction model in advance, the inputted MSI images
from low-cost devices can be reconstructed to high-cost HSI
images during practical usage. Then, the reconstructed HSI
images will be employed for food composition prediction, in a
similar manner to real HSI. In this way, deploying a low-cost
MSI camera during practical usage is enough, which could
approach the performance of an HSI camera through SR.
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Fig. 3. The process of spectral reconstruction, which can restore the
hyperspectral images from limited spectral measurements.

Challenges in Applying SR to histamine prediction.
Despite the great potential of SR, applying it to the task
of predicting histamine-a low-concentration trace element-
poses critical challenges. All current SR algorithms reconstruct
the complete HSI data, while the HSI data contain complex
spectral information, some of which are irrelevant to histamine
and unhelpful for its prediction. It is crucial to perform feature
selection on HSI data to eliminate redundant and irrelevant
information. Moreover, the spectral reconstruction process
may introduce errors that are randomly distributed across
all bands of the reconstructed data. Given that the spectral
characteristics of trace elements are subtle, these errors can
obscure valuable spectral information of histamine, leading to
degraded performance in its prediction. Therefore, this paper
proposes reconstructing useful spectral features rather than
complete hyperspectral images. FreshSpec employs a spectral
foundation model on HSI images to extract fine-grained useful
features as the reconstruction target, while filtering redundant
and irrelevant information, thereby enhancing the utility of the
reconstructed data for histamine prediction.

C. Spectral Foundation Model.

The foundation models are famous at their expertise in
effectively capturing complex patterns and representations
across various domains [20]-[22]. In the realm of hyperspec-
tral imaging, these models are employed to extract meaning-
ful knowledge representations from intricate spatial-spectral
mixed data, addressing challenges in the remote sensing
field [23]-[25], [41]. Notably, SpectralGPT [23] achieves
superior performance on multiple remote sensing tasks, thanks
to its innovative 3D generative pretrained transformer architec-
ture, which is trained on over one million spectral images and
boasts over 600 million parameters. SpectralGPT can effec-
tively extract information from spatial-spectral coupling tokens
while mitigating hyperspectral redundancy with its attention
mechanism and 3D masking strategy. Thus, it’s promising to
leverage the feature extraction capability of SpectralGPT to
assist the spectral reconstruction algorithms.

However, given the training samples are from the remote
sensing domain, like trees and fields, whose spectral charac-
teristics and spatial distribution are completely different from
that of sashimi samples, Spectral GPT can not be directly used
for histamine-related spectral feature extraction. To overcome
this challenge, FreshSpec proposes a contrastive-based fine-
tuning scheme for SpectralGPT encoder to capture sashimi
histamine-related features.

D. Unsupervised Adaptation and Continual Learning.

In practical applications, for the unseen new sashimi sam-
ples with spectral feature differences, the histamine regressor

needs to adapt but there is no prior information about these
unseen samples. So, without any labels, the supervised or
few-shot domain generalization methods are inapplicable. For
the unsupervised adaptation methods for hyperspectral images,
such as maximum mean discrepancy (MMD) for distribution
alignment [42], [43], adversarial training [44], [45], or self-
training [46], all need sufficient data in the target domain,
otherwise the distribution of the target domain cannot be
learned. However, in our scenario, as the histamine growth
(i.e., spoilage) of one sample is irreversible, when we predict
its histamine level, we only have the unlabeled data with
fewer histamine levels from former timestamps, which cannot
measure the overall distribution of target domain. Besides,
different from aligning category boundaries in classification,
histamine prediction is a regression task where the metrics in
the feature space should strictly align with the continuity of
labels. Using target sample’s limited unlabeled data with an
incomplete histamine range cannot achieve this. Thus, these
unsupervised adaptation methods cannot apply to our scenario.

As mentioned, the target sample’s data quantity is limited
and its histamine range is incomplete at only one timestamp.
So, the model should be constantly adapted with the updated
data distribution to promote its performance. Accordingly, we
consider to use unsupervised continual learning (UCL). Ex-
isting UCL algorithms employ various self-supervised learn-
ing techniques to extract generalized representations of old
and new data, such as pseudo-labeling [47] and contrastive
loss [48]. Some UCL tasks specifically target representation
forgetting [49] or output bias [50]. While these general
methods demonstrate a certain usability in tasks like image
classification, they are not well-suited for regression tasks
like histamine monitoring. In contrast, FreshSpec proposes a
novel unsupervised continual learning framework based on the
incremental characteristics of histamine.

E. Motivation and Our Objectives

To summarize, FreshSpec aims to achieve low-cost and
automatic histamine monitoring, which existing technologies
cannot support. FreshSpec attempts to use low-cost MSI and
leverage spectral reconstruction to promote its performance
approaching HSI. Considering the redundancy and irrele-
vance problem in existing spectral reconstruction algorithms
overwhelming histamine characteristics, FreshSpec proposes
reconstructing only useful spectral features instead of complete
HSI, where SFM is applied for feature extraction on HSI.
Then, to overcome the challenges of (1) spectral patterns gaps
in SFM between remote sensing objects and sashimi histamine
and (2) spectral feature differences of unseen sashimi samples
in practical applications, FreshSpec presents two correspond-
ing designs, with details elaborated in the next section.

III. SYSTEM DESIGN

In this section, we will introduce the detailed design of
FreshSpec. Figure 4 shows the overall pipeline of FreshSpec,
which consists of three main parts. First, we extract the ROI
(i.e., the sashimi area) of collected MSI and HSI images and
pair them spatially, in § III-A. Then, we input the preprocessed
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unsupervised continual adaptation.

Fig. 5. ROI extraction. The yellow rectangle indicates the minimum enclosing
rectangle of the sashimi area after using SAM. The blue rectangle indicates
the area after rotation. The green one is the found inscribed rectangle and the
red one inside is the final area to extract.

images to train the feature-wise reconstruction (FSR) model,
and obtain the histamine-related spectral features during infer-
ence phase, as presented in § III-B. Next, for training phase,
we input the features to train a base CNN regressor. For
inference phase of new sashimi samples, we update the base
regressor at each time point, using the proposed unsupervised
continual adaptation (UCA) algorithm on new MSI images
over time, as described in § III-C. Finally, the histamine
prediction results can be derived at each time point.

A. Data Preprocessing and ROI Extraction

A large amount of paired MSI and HSI data is required to
train the spectral reconstruction model. The paired data means
pixel-to-pixel alignment of the data from two devices, which
is impractical to collect physically due to the diversity of hard-
ware parameters and capturing setup. Previous works utilize
down sampling to generate large-scale data, which is proven to
cause huge performance degradation to real test datasets [17],
[18]. To solve this problem, we propose a sashimi sample
preprocessing pipeline to extract the sashimi sample area while
aligning the MSI image to the corresponding HSI image.

As shown in Figure 5, the pipeline begins with Ambient
Light Elimination. We conduct background subtraction on
MSI and HSI images respectively, by removing the spectral
image illuminated solely by ambient light. The collected HSI
images have been black-white calibrated in advance by closing
the lens cap (black reference) and using the uniform diffuse
whiteboard (white reference) [51], which is the camera’s built-
in function. Next is Region of Interest (ROI) Extraction.
We employ the Segment Anything Model (SAM [52]) to
accurately extract the ROI, based on the clear contrast between
sashimi and background. This process generates a binary mask
to highlight the selected area. Then, we conduct outlier filter-
ing to refine the masked region by removing the small possible
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noise area, ensuring that only the sashimi region is retained.
The subsequent phase, Rotation and Alignment, involves
calculating the smallest enclosing rectangle and adjusting the
orientation of both images to O degrees. That is, let the
contour’s bounding box and minimum circumscribed matrix
completely overlap. Accordingly, even if the two images are
shot at different angles, we can align them to the same angle.
Following this, we perform Cropping and Resizing, where we
identify the maximum inscribed rectangle to crop the image,
extracting the relevant ROI from the original image. Then,
to avoid the possible shadows during shooting, we take 90%
of the internal area after cropping as our final area to extract.
Finally, we adjust the dimensions of the cropped MSI and HSI
regions to meet the necessary size requirements for further
analysis. Based on the above procedure, we can ensure the
processed MSI and HSI images are well paired regardless of
the two cameras’ shooting locations, angles or resolutions.

B. Feature-Wise Spectral Reconstruction

The redundancy of hyperspectral images has been vali-
dated in previous works [19], [53]. From the spectral wise,
the redundancy refers to both the high correlation between
various wavelength bands and involving of irrelevant bands
for histamine detection. The correlation matrix in Figure 6
indicates a high correlation in some neighbor wavelengths,
which may be useless for subsequent histamine detection.
However, these high-correlated information are maintained
in the reconstructed spectra from the state-of-the-art (SOTA)
spectral reconstruction (SR) model, e.g., MST++ [40]. Fur-
thermore, since the concentration of histamine in the sashimi
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sample is pretty low (i.e., the order of magnitude is mg,/100g),
its spectral absorption characteristic is easily overwhelmed
by absorption bands of other substances, such as proteins.
Moreover, the reconstruction error is consistently spread across
various frequency bands of the reconstructed data. This uni-
form distribution of error in non-essential bands complicates
the extraction of valuable information from the reconstructed
dataset.

We attempt to solve the above problem by proposing
feature-wise spectral reconstruction (FSR). As shown in Fig-
ure 7, different from previous spectral reconstruction algo-
rithms, our FSR model targets on reconstructing the most
informative spectral feature instead of the full HSI data,
which then feeds into the histamine regression model. To
reduce the redundancy and extract useful spectral features, we
observe that nowadays the large spectral foundation model,
i.e., SpectralGPT [23] offers significantly strong capabilities
for fine-grained spectral feature representation. SpectralGPT
is trained with one million spectral images and contains
over 600 million parameters. Its encoder, with deep 11-layer
transformers and feature sharing mechanism, can effectively
learn the representations from spatial-spectral mixed tokens.
Besides, its attention mechanism can capture cross-band spec-
tral dependencies and dynamically assign weights to diminish
attention to redundant bands, thus reducing the redundancy of
output features. Thus, we can redirect the output of the MST++
spectral reconstruction model into the encoder of Spectral GPT.
By applying Spectral GPT’s encoder to the target HSI, we can
achieve FSR.

However, the challenge here is that, although Spectral GPT
excels in spectral feature representation, it is trained on remote
sensing images, which possess spectral characteristics that
differ significantly from those of sashimi and are unrelated
to histamine. Consequently, directly applying SpectralGPT’s
original encoder for spectral reconstruction is likely to result
in subpar performance, as the reconstructed features will not
correspond to sashimi’s histamine levels, leading to inaccurate
predictions.

To this end, we consider to leverage the histamine-related

TABLE II
(1) RELEVANCE (MI) BETWEEN RECONSTRUCTED DATA AND HISTAMINE.
(2) REDUNDANCY OF RECONSTRUCTED DATA ACROSS CHANNELS.

Solution Relevance Redundancy
SOTA SR 0.2989 0.6937
FSR (not fine-tuned) 0.1384 0.3799
FSR (fine-tuned) 0.8153 0.4455

spectral features of our sashimi samples to fine-tune Spec-
tralGPT’s encoder. Specifically, we propose a contrastive-
based training scheme to capture spectral features in a soft
manner while preventing overfitting. We seek to enhance the
feature distance between samples with significant histamine
differences while reducing the distance between samples with
similar histamine values. Subsequently, we apply the frozen
fine-tuned Spectral GPT encoder for histamine-related spectral
feature extraction in FSR, as shown in Figure 8.

Fine-tune the Spectral Foundation Model. To ensure
the SpectralGPT’s encoder can extract histamine-related em-
bedding, we introduce the histamine value of the sample as
prior knowledge and combining with the contrastive learning
scheme to guide the fine-tuning process. Specifically, as shown
in Figure 8, we select positive and negative samples based
on the histamine value difference of the samples. Given his-
tamine difference thresholds K}, and K}, , the histamine value
difference between positive samples and the target sample is
less than K}, while the histamine value difference between
negative samples and the target sample is greater than Kj,.
The thresholds are determined according to our targeted lab-
grade HSI performance [5], [10]. Then, we input the HSI data
(64x64x138) into SpectralGPT’s 3D convolutional layer for
patch embedding and next its encoder with 11-layer transform-
ers, and obtain the feature (294 x768) in the latent space. Next,
we can calculate the features’ Euclidean distance of every two
samples. Finally, we fine-tune the encoder by narrowing the
feature distance between each sample and its positive samples
(i.e., histamine gap < K}, ) and increasing that between each
sample and its negative samples (i.e., histamine gap > Kj,).
And the target is to minimize the following loss:

expt©@U).0(1)
Ze =B llog et om egpreremy 1 (D

where I, 1™, I" indicate the HSI sample and its corresponding
negative and positive sample. ©(]) refers to the extracted
features by SpectralGPT’s encoder, and £(x,y) means the
mean square distance between the two features. By using
this contrastive loss to fine-tune the pretrained SpectralGPT
encoder, its output features are able to recognize the subtle
differences among sashimi histamine levels. That is, rendering
close spectral features for samples with similar histamine
levels, while divergent ones for those with distinct levels.

Instead of narrowing the feature difference between remote
sensing images and sashimi images, our fine-tuning is to
leverage the inherent adaptability of the foundation model to
reconfigure its latent representation for task-specific objective,
i.e., distinguishing sashimi’s various histamine levels. Thus,
the fine-tuned encoder could better capture sashimi spectra
patterns and extract the most informative spectral characteris-
tics that are related to histamine.
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Fig. 9. CNN model for histamine regression.

Train the Feature-wise SR Model. After fine-tuning, we
then freeze the transformer structure in the SpectralGPT’s
encoder and combine the encoder with SOTA spectral recon-
struction model (MST++ [40]). Figure 8 shows the training
process of our feature-wise SR model. In this process, the
spectral features are extracted using the fine-tuned Spectral-
GPT’s encoder, which ensures that the model is leveraging
its enhanced capabilities to capture important spectral infor-
mation. To better fit our data condition in terms of resolution
and channel number, we do not freeze the patch embedding
layer of SpectralGPT before its encoder and let it be jointly
trained as a soft constraint. Then we utilize the mean square
error between the spectral feature extracted from the real HSI
and the spectral feature that output from the feature-wise SR
model as loss function, i.e.,

.iﬁc = EIHG(Ihsi) - \Ij(lmsi)Hz? (2)

where Ij,,; and I,,; refer to the HSI and MSI data of the sam-
ple I, and ¥ (-) indicate the feature-wise SR model. Therefore,
by minimizing the feature gap between real HSI and MSI, the
model can not only improve the quality of the reconstructed
data but also contribute to a deeper understanding of the
spectral characteristics inherent in the data, paving the way
for subsequent histamine regression.

Table II measures the histamine relevance and redundancy
of the reconstruction results of SOTA SR method, our FSR
method and our FSR method without fine-tuning, using salmon
samples in our dataset [26]. The relevance is measured with
mutual information (MI), a generalized correlation metric
for two variables that is sensitive to any kind of functional
relationship, not just linear dependencies [54]. We compute
MI between reconstructed data and the histamine levels. For
the redundancy, we calculate the average value of different
wavelength band’s correlation matrix. As we can see, com-
pared to SOTA SR method of reconstructing complete HSI,
our FSR method can greatly improve the reconstructed data’s
relevance to histamine by 2.73x, avoiding reconstructing
irrelevant information. If not conducting fine-tuning on Spec-
tralGPT encoder, the relevance would degrade to even lower
than SOTA SR, because reconstructing along the original
spectral patterns of remote sensing images would deviate more
from the sashimi histamine characteristics. This indicates the
necessity of fine-tuning and verifies the effectiveness of our
approach. Moreover, after fine-tuning, the redundancy slightly
increases possibly due to the training manner difference be-
tween pretraining and fine-tuning. Despite that, the redundancy
of our FSR solution is much lower than SOTA SR by 35.78%,
revealing the effectiveness of conducting feature extraction on
target HSI for SR.

W

gb | - Salmon Tuna Snapper
=4
8D
g
o3
©n
22
-g
g 1 o~ o~ o~ ')
s ) <+
2 N B 2
:0 N o o o

Seen Samples Unseen Samples

Fig. 10. The generalization gap of the histamine prediction between seen and
unseen samples.

C. Histamine Regression and Unsupervised Continual Adap-
tation

Train the Base CNN Regressor. After feature-wise spectral
reconstruction, we consider to train a convolution neural
network (CNN) to predict the histamine level from the re-
constructed features. To better ensure the integrity of spatial-
spectral information, here we choose the reconstructed 3D
feature in the latent space as input to our CNN model instead
of the 2D feature in the last layer. Before inputting into our
CNN model, we conduct a few denoising operations to avoid
overfitting. First, we use average pooling and a sliding window
for moving averages to reduce the effect of feature noise.
Then, we input the cleansed feature (4 x4 x138) which passes
through a convolution layer, a batch normalization layer and
an average pooling layer in sequence. A 16-length vector could
be derived. We exploit it in a fully-connected layer to obtain
the histamine prediction result, as illustrated in Figure 9.

Although our proposed CNN-based histamine regression
model achieves good performance on seen samples, we ob-
serve a performance degradation when applying the model on
unseen sashimi samples. As shown in Figure 10, for salmon,
tuna and snapper, their root-mean-square-errors on new sam-
ples are all significantly higher than seen samples. This stems
from the differences in colonies and enzymes inside individual
sashimi sample, which may indicate diverse spectral features
among different samples. Thus, it’s essential to provide an
adaption method to ensure the model’s performance on unseen
samples.

Unsupervised Continual Adaptation of Histamine Re-
gressor. To solve this challenge, we propose an unsupervised
continual learning method to update the histamine regressor,
which can adapt the CNN regression model to new samples
without labels. The method is based on two foundations:
monotonic accumulation properties of histamine and a huge
amount of unlabeled MSI data. Figure 11 illustrates the MSI
images of a salmon sample at various timestamps. Specifically,
we collect MSI images of the sample at each timestamp Iy, .
However, as the histamine label is impossible to obtain in
the practical scenario, for a sample at long intervals (e.g.,
Y:,) whose histamine label is currently needed to predict, we
don’t know the histamine level of this sample in previous
timestamps, i.e., ty and ¢;. Accordingly, we cannot conduct
supervised continual learning for model adaptation. Neverthe-
less, as the monotonic accumulation properties of histamine,
we can ensure that Y;, > Y;, > Y. In this way, by limiting
the model’s prediction of continuous timestamp for the same
sample to follow the incremental property, we are able to
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Fig. 11. The monotonic accumulation properties of histamine and correspond-
ing unlabeled MSI images.

achieve unsupervised calibration models on new samples.
Specifically, if the pseudo-label predicted from the current
timestamp’s MSI is less than the pseudo-label from the last
timestamp’s MSI, which violates the histamine incremental
property, we will adapt the model to minimize this error gap
to 0. That is,

& = Er|| @0 (W(1,,)) — Pu(W(1:))II%,

if q)k(‘ll(lti+1)) < (I)k(\II(Itb)) (3)

where ¢ denotes the current regression model not adapted yet
to get pseudo-labels from MSI images. I;, means the MSI
images at ¢-th timestamp. Eqn 3 leverages only the histamine
increment relationship between every two timestamps, i.e.,
Oy (V(I,,,)) should be greater than @ (¥ ([;,)), regardless
of the increase speed. That is, as long as @ (V(I,,,)) >
®y(U(1;,)) holds, the loss function (Eqn 3) will not take it
into account during the calculation, no matter what the value
|Px (U (11;,)) — Do (W (L)) is.

We constantly adapt the model at every timestamp for each
sample. For example, for a sample at ¢, timestamp to predict,
its model will be firstly updated at ¢; based on the pseudo-
labels generated using the basic regression model and secondly
updated at to according to the pseudo-labels obtained using
the adapted model at ¢;. For ¢ timestamp, after acquiring
MSI I;,, we use the updated model at ¢;_; to generate the
pseudo-labels, and judge whether the pseudo-labels of every
two adjacent timestamps (to,t1), (t1,t2), ..., (tg—1, tx) satisfy
histamine increment relationship. Those violating the incre-
ment relationship will be regarded as error cases. Then, we
minimize the sum of these cases’ error gaps Zi:olfr(ti, tit1)
to update the regression model to generate more accurate
pseudo-labels following histamine accumulation property.

Note that different from the usage of pseudo-labels in past
methods to supervise the learning, our pseudo-labels here are
variables to optimize instead of labels during the adaptation.
Our method’s purpose of model adaptation is to make the
generated pseudo-labels more accurate which follow the his-
tamine accumulation property and minimize the error cases
violating this property, as defined in Eqn 3. The reduction
in such error cases could benefit the histamine prediction
accuracy. So our method would not incur error accumulation.
Instead, with more unlabeled MSI images collected over time,
our method can achieve higher calibration performance with
more information of target sample’s features.

Besides, catastrophic forgetting is inevitable during con-
tinual learning, especially in an unsupervised manner. The
prediction value may get more and more biased even if it
satisfies the histamine incremental property. So, during each
iteration in the above model adaptation, we design to re-train

Algorithm 1: Framework of Unsupervised Continual
Regressor Adaptation.

Input: Feature-wise SR model: ¥(-); CNN-based
histamine regression model: ®(-); MSI images
of the new sample in continuous timestamps:
Ly, Ity , ..., It ; MSI image set of all seen
samples in training dataset: .%;,4,,; Current
timestamp: t;; Mean square error loss: .Z(-).

Output: Histamine value of the last timestamp ¢,, and

update regression model ®,,(-).

1 Initialize current timestamp and current regression
model: ¢, = t1, ®g(-) = Po(+)
2 while ¢, <, do

3 for epoch =1, 2, ...,  do
4 Obtain pseudo-label of the current timestamp:
Vi, = ©x(U(Ly,)); Initialize loss: %, =0

5 foreach timestamp t; in [t;_1 ~ to] do

6 Obtain pseudo-label: Y;, = (U (1y,));
7 ifY;,, , <Y then

8 ‘ EZSA += g(Yii-HvY;fi);

9 end

10 end

11 Update @ (-) by minimizing .%;, .

12 Update ®(-) by retraining with Fy,.qir.
13 end
14 end

15 Calculate Y;, = @, (¥ (I;,)) and apply D,,(-) = Dy ().

this model using the base regression model’s training data
(seen samples with labels). In this way, we can control the
model convergence direction and avoid prediction bias.

The above model adaptation process is individually operated
for each sample, for achieving better generalization perfor-
mance to each sample. This can also avoid the abnormal
samples affecting the other samples’ prediction. All samples’
adaptation starts from the base regression model, respectively.
As the size of the regression model is small with only
84KB and one-time adaptation needs 160.58M floating-point
operations, separately conducting constant adaptation for each
sample brings very little storage cost and computational cost.
For example, suppose there are 300 sashimi samples in the
showecase, the storage cost of all models is only 24.6MB and
the overall computational cost is only 48.2G floating-point
operations (while NVIDIA T4 GPU can reach 65 TFLOPS).
These are extremely small overheads for the cloud server side.
Figure 12 shows the model adaptation results of eight typical
samples in our dataset [26], whose ground truth is collected
at t4. At every timestamp of ¢;-t4, we update the model and
use the updated model for histamine prediction and RMSE
calculation. As we can see, our method can work on whether
the low-RMSE samples or high-RMSE samples, since it relies
on histamine increment relationship instead of absolute error
of prediction. And the RMSE exhibits a decreasing trend over
time. This is because, with more MSI images collected over
time, we can judge more data pairs’ increment relationship
and adapt to more accurate prediction results.
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Fig. 12. RMSE changes of sashimi samples with model adaptation of UCA.
MO is the base regression model, and M1-M4 are the adapted models using
MSI images collected over ¢o-t4. Each model is used to predict the histamine
value of t4’s MSI image, and calculate the RMSE with ground truth.

Algorithm 1 depicts the detailed steps of our unsupervised
continual regressor adaptation method (UCA), in which we
use the size relationship of pseudo-labels over the time series
to constantly update the regression model. Our UCA algorithm
depends only on the accumulation property of histamine, re-
gardless of irregular increase speeds in different environments.

IV. IMPLEMENTATION

We implement a compact and low-cost prototype using an
off-the-shelf multispectral camera [55] and light components.
Figure 13(a) illustrates the practical working scenario of
FreshSpec, where the system is deployed at the top of the
sashimi showcase with a distance to the sample. In our basic
setups, the distance is about 20 cm, which is a common height
of sashimi showcases. To minimize the system size while
avoiding direct leakage of light sources into the camera, we
design a two-layer structure of the prototype. As shown in
Figure 13(b), the LED array is deployed at the top layer while
the multispectral camera is at the bottom layer, within a layer
distance of 2cm. Meanwhile, the 7 full-band halogen lamps
(VCC7216-ND) are uniformly placed at the top layer to ensure
sufficient light intensity and uniform light field. As a result,
the size of the prototype is only 9¢m x 9cm X 2em, which is
easily deployed into any commercial refrigerators in sashimi
restaurants or fresh food stores.

Hardware. We deploy the SEETRUM SEE8820 MSI cam-
era [55] at the center of the bottom layer to capture sashimi
MSI images, with a cost of less than $100. Table III summaries
the basic hardware parameters of our low-cost MSI camera
(SEETRUM SEES8820) with comparison of expensive lab-
grade HSI camera (Cubert FireIEYE S185). The SEE8820
MSI camera covers both visible and near-infrared bands with
wavelengths ranging from 380nm to 980nm. The camera can
support no more than 31 various wavelength channels and
has a coarse-grained spectral resolution, i.e., 50nm, thereby
requiring spectral reconstruction algorithms to enhance. Ad-
ditionally, the spatial resolution of captured MSI images is
512 x 512, and the frame rate is 30fps, which is promis-
ing to provide fast and on-site histamine detection. Among
these parameters, the basic requirement of MSI device for
histamine prediction, is the wavelength coverage of visible and
near-infrared bands. The low spectral resolution of 40-50nm
is common in MSI device specifications. And through our
spectral reconstruction, we can lead the low-resolution MSI to
approach the performance of high-quality HSI, as the results
demonstrated in Section V.

Models. Our feature-wise spectral reconstruction model and
base histamine regressor are trained using NVIDIA A100 GPU
and T4 GPU respectively, and deployed on the cloud server
side as well. As the FSR model embeds the SpectralGPT
encoder, its computational and memory overhead (see Sec-
tion V-B3) is probably unaffordable at the edge side. So we
conduct all the computation processes on the server side with
enough resources. The model training processes are offline
completed as follows. The training data of MSI-HSI pairs for
reconstruction have been uploaded to the cloud in advance
for training the FSR model, which after training is stored and
deployed on the server side for practical usage. Similarly, the
base regression model is trained with pre-uploaded normal
MSI samples with histamine labels on the cloud server. The
base regressor is stored and will be used in UCA for new
sashimi samples during practical usage.

Practical Usage. During practical usage, the user can
set the timestamp interval (e.g., 30 minutes or shorter) to
capture the MSI images of sashimi samples monitored in the
showcase. The captured MSI images at every timestamp will
be automatically uploaded to the cloud server. Then, the server
will input the preprocessed MSI into the stored FSR model
and output the reconstructed features. Next, for each monitored
sample, if it’s the first time to upload this sample’s MSI image,
its reconstructed features will be inputted to the base regressor
and output the histamine prediction result. If existing past
stored MSI images of this sample, its reconstructed features
will be inputted to UCA module to update the current regressor
and output the histamine prediction result after fast adaptation.
Every time when new MSI images are uploaded, the server
will store them separately. Finally, the server will send the
predicted histamine levels at this timestamp to the local user.
The whole procedure is with little latency (<1 second per
sample under 20 Mbps network speed).

V. PERFORMANCE EVALUATION
A. Experiment Setup

1) Datasets: We collect an MSI-HSI reconstruction dataset
and an MSI-histamine regression dataset, which will be made
publicly accessible in [26].

In the MSI-HSI reconstruction dataset, the HSI images
with 138 channels and 1024 x1024 pixels are collected by
Cubert FirefIEYE S185 camera and the MSI images with
31 channels and 512x512 pixels are collected by the above
Seetrum SEE8820 camera. We put the salmons, tunas and
snappers for five hours in lab environment with histamine
accumulation and totally 712 pairs of MSI-HSI samples are
collected.

In the MSI-histamine regression dataset, the MSI images
are collected by the same type of MSI camera deployed on
the top of the showcase. The quantity of salmons, tunas and
snappers samples is equally 80. We divide them into 5 groups
corresponding to time points of 5 hours for images and ground
truth collection. The ground truth is obtained by destructive
sampling into a standard histamine rapid tester (see Figure 14),
with <0.05mg/100g error. For conducting continual learning,
each group’s samples will be collected MSI at their former
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Fig. 13. Pratical working scenario and prototype of FreshSpec.

TABLE III
HARDWARE PARAMETERS COMPARISON OF TWO DEVICES: SEETRUM
SEE8820 (MSI) AND CUBERT FIREFLEYE S185 (HSI)

[ Parameters [ Seetrum (MSI) [ Cubert (HSI) |
Channel Range 380~980nm 450~1000nm

Channel Number 31 138

Spectral Resolution 50nm 8nm
Spatial Resolution 512x512 pixels 1000x1000 pixels
Cost ~ $100 >$10,000

time points. That is, we collect 80 samples’ data at the first
time point and 64 samples’ data at the second one. For each
sample, we capture two MSI images every time. Accordingly,
we get 1440 MSI images in total on 240 salmon, tuna and
snapper samples for histamine regression.

The fish species- salmon and tuna used in our dataset are the
most common sashimi types globally [56], [57]. For example,
salmon accounts for half of the sashimi sold in South Korea
[58]. And we use samples from two brands for each sashimi
type. Our collected sashimi samples’ histamine range from
0 to 70 mg/100g, covering the main freshness interval of O-
40 mg/100g, which is similar to existing histamine detection
works [5], [10] and could represent the histamine levels
difference. The extremely spoiled samples with >70 mg/100g
histamine levels are not much value to predict.

2) Training scheme: During the reconstruction period, both
MSI and HSI images after alignment are split into patches
with 64x64 pixels with a stride of 32. To fine-tune the
SpectralGPT’s encoder, we set the thresholds of positive-
negative samples Kp; = 2 and Kjpo = 4 according to the
lab-grade HSI performance [5], [10], with a batch size of 32
and learning rate of 10~%, and train the encoder for 10000
iterations. Then, for feature-wise spectral reconstruction, we
set the learning rate to 5x 10~* with cosine annealing to 1076,
The reconstruction model is trained for 50000 iterations in
total. For the regression model, we first down-sample the MSI
images to 64x64 pixels with nearest neighbor interpolation
and conduct average pooling to further reduce the image size
to 4x4. Then, we utilize a batch size of 16 and an initial
learning rate of 10~% with cosine decline to 1076 on the
Adam optimizer, and train the model for 3000 epochs for
convergence. Ultimately, we save this regression model as our
basic regression model for the subsequent continual learning
part. For every time point, we conduct model adaptation on
each sample for 8 epochs with 10~° learning rate via past
MSI image. Then, we update our basic model with this new
model for the samples on latter time points.
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Fig. 14. Sashimi samples and histamine ground truth collection.

3) Baselines: Since there is no low-cost automatic his-
tamine detection solution, we consider to apply the SOTA fish
histamine prediction methods of high-cost HSI solutions [10],
[31], [59], [60] to the reconstructed HSI (reconstructed with
SOTA SR model MST++ [40] on MSI) as baselines instead,
similar to the works of other foods [17], [18]. Besides, we also
take the performance of MSI without spectral reconstruction
as a baseline. The details are as follows:

(1) MSI. We input the averaged spectra of MSI images into
a partial least squares (PLS) regressor, which is widely used
in spectra-based freshness detection area [61].

(ii) MSI (SR) + PLS [10]. As mentioned, similar to [17],
[18], we first reconstruct the MSI image with SOTA model
MST++ [40] and obtain the reconstructed HSI, denoted as
MSI (SR). Then, we conduct principal component analysis on
the reconstructed spectra for feature selection and reduction,
and then input it into the PLS regressor following [10].

(iii) MSI (SR) + CNN [59]. As the CNN model [59] is for
histamine classification task instead of regression, we modify
the output dimension of its last layer to one to apply it.
Similarly, after getting the reconstructed HSI, we input it into
the modified CNN model for training and predicting histamine.
Besides, we also employ our CNN model and choose the better
performance of the two CNN models as this baseline’s result.

@iv) MSI (SR) + WNN [31]. Similarly, after getting the
reconstructed HSI, we use the wavelet neural network (WNN)
in [31] to train and predict the histamine levels.

(v) MSI (SR) + ViT [60]. Similarly, we modify the last layer
and turn the vision transformer (ViT) model for fish freshness
classification in [60] to be a regression one. And then we input
the reconstructed HSI into it for training and prediction.

Note that FreshSpec’s innovation does not lie in the regres-
sion model design, but in the feature reconstruction frame-
work. So we compare the FreshSpec with the best performance
among the above (ii)-(v) solutions that all use the reconstructed
HSI via SOTA reconstruction method MST++ [40]. We denote
the best performance among (ii)-(v) as “MSI (SR)-SOTA”.

4) Evaluation Metrics: Since histamine prediction is a
regression problem, we exploit the main two metrics for eval-
uation: R-squared (R2) and root mean square error (RMSE).
As mentioned in past works [5], [10], lab-grade HSI (costing
>$10000) can achieve around an RMSE of 2-3 mg/100g and
an R-squared of 0.96-0.97. Our MSI-based system (costing
only $100) is targeted to obtain the approaching performance.
Besides, according to the FDA regulation of histamine [7], the
RSME of a usable solution should not exceed 5 mg/100g.



Fig. 15.

TABLE IV
R2 COMPARISON BETWEEN FRESHSPEC AND BASELINES.

Solution | Salmon Tuna Snapper | Average

MSI 0.6154 0.6701 0.7385 0.6747

MSI (SR) + PLS 0.7872 0.7595 0.7597 0.7688
MSI (SR) + CNN 0.7672 0.7286 0.7105 0.7354
MSI (SR) + WNN 0.6842 0.6146 0.5766 0.6252
MSI (SR) + ViT 0.0537 0.1731 0.2594 0.1620
MSI (SR)-SOTA 0.7872 0.7595 0.7597 0.7688
FreshSpec 0.9521 0.9252 0.9183 0.9319
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B. Overall Performance

We evaluate FreshSpec’s performance with 5-fold cross
validation on 80 samples for salmons, tunas and snappers,
respectively. The data in the train set and test set are from
completely different sashimi samples.

1) Baseline Comparison: The overall prediction results are
shown in Figure 16 for all three sashimi sample types. It’s
obvious that FreshSpec can accurately predict the histamine
values for various sashimi types and histamine levels. Fig-
ure 15 and Table IV illustrate the RMSE and R2 of the
prediction results respectively, revealing important findings.
First, FreshSpec achieved significantly better forecast results
compared to the baselines. Compared to the current SOTA
method, the average R2 of FreshSpec is increased by 0.1631
and the RMSE is decreased by 2.744 where the prediction
performance is apporaching lab-grade HSI. We can also notice
that for the reconstructed data with SOTA SR method, using
complex models on them will easily lead to overfitting, due to
their redundant and irrelevant information. In contrast, Fresh-
Spec proposes reconstructing only histamine-related useful in-
formation to overcome this. Secondly, we note that the solution
using SOTA SR has a very limited improvement based on
MSI-based solution in histamine prediction tasks comparing
with previous tasks [17], only 0.0941. This is because the high
redundancy of the HSI data wavelength is very unfavorable
to the prediction of histamine, a trace element. In contrast,
by using the features-based spectral reconstruction proposed
in this paper, the predictive performance of FreshSpec on
histamine values has been significantly improved, and R2 has
been improved by 0.2572, demonstrating the effectiveness of
the system design. Moreover, as we capture two MSI images
every time for each sample, their RMSE gaps are only 0.064
on average, indicating the stability of our system. Additionally,
three sashimi varieties exhibit slightly different prediction per-
formance, probably due to the diversity of histidine contents
and inner chemical components among different sashimi types
[62].

Fig. 16. Histamine prediction results in comparison with the SOTA.
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Fig. 17. T-SNE embedding distribution of FreshSpec and the SOTA.

Below we denote the best performance among all baseline
schemes as “SOTA”, for comparison with FreshSpec.

2) Feature-wise Comparison: To further investigate the
effectiveness of FreshSpec’s design, we conduct the two-
dimensional t-distributed stochastic neighbor embedding (t-
SNE) projections [63] to illustrate the embedding representa-
tions of FreshSpec. We classify the samples into five histamine
level groups, i.e., 0-5, 5-10, 10-20, 20-40, and >40 mg/100g
according to the regulations of different countries on the safe
value of histamine [7]. Figure 17 displays the embedding
representations of FreshSpec and the embedding of the same
salmon samples after the SOTA SR method. We can find
that FreshSpec displays much clearer clustering of all five
histamine levels than the baseline, indicating its effectiveness
in extracting histamine-related information during the recon-
struction process.

3) System overhead and time latency: Our FSR model with
333.6MB size, has a total parameter number of 87.395M with
30.08G floating-point operations per second (FLOP), due to
our usage of large spectral foundation model’s encoder during
FSR. Deploying FSR model on the edge imposes significant
memory requirements that may exceed the limited resources
of edge devices. Therefore, we deploy FSR and conduct all
the computations on the cloud server. The inference time
for reconstructing one MSI sample’s spectral feature on the
NVIDIA T4 Tensor Core GPU is 47.2ms, which can support
quick acquisition of spectral features in practical applications.



TABLE V
ABLATION STUDY FOR TWO MODULES FSR AND UCA.

Salmon Tuna Snapper Average
Solution RMSE R2 RMSE R2 RMSE R2 RMSE R2
SOTA 6.3154 0.7872 5.1395 0.7595 6.0798 0.7597 5.8449 0.7688
MSI (SR) + SFM 5.8861 0.8098 4.8296 0.7894 5.7014 0.7688 5.4724 0.7893
MSI (FSR w/o FT) 6.9442 0.7382 5.8243 0.7065 7.1445 0.6722 6.6377 0.7056
FreshSpec (w/o FSR) 5.3840 0.8409 4.2839 0.8341 5.3215 0.7925 4.9965 0.8225
FreshSpec (w/o UCA) 3.4993 0.9307 3.0471 0.9093 3.8851 0.9053 3.4772 0.9151
FreshSpec (ours) 2.9433 0.9521 2.7494 0.9252 3.6092 0.9183 3.1006 0.9319
Our regression model with 84KB size has a total parameter B FreshSpec (771 SOTA
count of 19.9K and 318.48K FLOP per epoch, and is together =12
deployed on the server side. Only 0.4ms is needed to predict i) %
one MSI sample’s histamine. Moreover, for the model update ED 6
in the UCA part, one-time adaptation needs 160.58M floating- o V
point operations for model forward and backward propagation. g3 / m/ W
. . ~
The measured time latency of adaptation is only 228.3ms for 005 510 10415 1520 2030

one sashimi sample at every new timestamp, using NVIDIA
T4 GPU.

Besides model overhead, we measure the communication
overhead of data transfer. Uploading an MSI image with
1.22MB size (compressed by our MSI camera’s firmware)
needs 611.2ms when the network speed is 20.43Mbps. The
latency of returning the histamine result (only several bytes)
to the local user could be negligible.

Overall, combining the image capturing latency of 33.3ms
per image, reconstruction and regression latency as well as
the communication latency, our system can achieve rapid
histamine detection with less than 1-second latency for each
sashimi sample. Suppose a showcase containing 300 sashimi
samples, the overall latency is less than 5 minutes.

C. Ablation Study

We then investigate the modules of FreshSpec by conducting
an ablation study to demonstrate the effectiveness of the
system design. Table V presents the results of ablation study,
where MSI (SR) + SFM denotes the results using features
directly extracted by the foundation model after SOTA spectral
reconstruction, FreshSpec (w/o FSR) and FreshSpec (w/o
UCA) denotes the results only using one module of our
system, respectively.

1) Effectiveness of FSR Module: Compared to the baseline
using the SOTA SR algorithm, the FSR module achieves an
improvement of approximately 0.1463 in R2, surpassing the
gains of reconstructing HSI from MSI. This result under-
scores the importance of reconstructing useful features for
trace element prediction tasks. Furthermore, it highlights the
effectiveness of our proposed FSR module. By employing
a contrastive-based fine-tuning method, the large spectral
foundation model can extract informative histamine-related
features to support subsequent regression tasks. Notably, the
improvements from the FSR module are consistent across
three types of sashimi samples, demonstrating its general
effectiveness. Moreover, directly extracting features of SOTA
reconstructed spectra by the foundation model, achieves a
limited performance gain of 0.0205 as compared to SOTA
scheme. Our method of feature reconstruction can largely
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Fig. 18. FreshSpec performance on generalization to various environmental
temperatures.
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promote the R2 by 0.1258, indicating its superiority. Addition-
ally, we can see that, if without fine-tuning the SpectralGPT
encoder, the FSR performance would greatly degrade, which
is consistent with the feature relevance results in Table II,
indicating the necessity of fine-tuning operation in FSR.

2) Effectiveness of UCA Module: We designed a CNN-
based model to predict histamine values in various sashimi
samples and introduced an unsupervised continual learning
scheme, i.e., UCA, to enhance its generalization capability
for new samples. The effectiveness of the UCA module is
reflected in Table V, which shows an R2 improvement of
0.0537 compared to the baseline. While the improvement from
the UCA module is modest compared to the FSR module,
this aligns with our expectations. The histamine increment
relationship between every two timestamps in UCA module
is not a strong constraint and needs the underlying model
performing relatively well. However, we believe UCA will
prove more beneficial in real-world applications, as it can
continuously update the model with new, unlabeled data,
allowing it to adapt and improve as new samples emerge
during deployment.

D. Robustness

Users may use FreshSpec in different scenarios, where envi-
ronmental brightness, temperature, and even sample properties
like size and location may affect the system’s performance.
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Thus we evaluate FreshSpec’s robustness under various ex-
perimental and environmental conditions.

1) Impacts on environmental temperature: The working
scene of the system is in the display cabinet of a sushi
restaurant or a fresh food store. Different stores have different
temperature settings for display cases, so it is necessary
to ensure that the system can work properly at different
ambient temperatures. We evaluated the histamine predictions
of FreshSpec for 8 salmon samples at ambient temperature
levels of 5, and the results are shown in Figure 18. From the
figure, we can see that the predicted RMSE of FreshSpec under
various ambient temperatures over 5°C is below 5 mg/100g,
all of which are better than the best results of the baseline,
proving the stability of FreshSpec under various temperatures.
This is benefited from our FSR, which can extract features
more relevant to histamine, filtering out environmental noises
like temperature effects. In addition, we also observed that
the prediction performance of FreshSpec became better and
better as the ambient temperature rose, which may be due
to the temperature drift of the multi-spectral camera used,
and the samples of the training set were all collected at
normal temperature, with certain deviation. This problem can
be solved by calibrating the hardware and is not the focus
of this article. Moreover, adding training data under more
different temperature setups to enhance FSR, could calibrate it
to become more aware of the irrelevant information induced by
temperature drift and reconstruct more robust features, which
will be explored in our future work.

2) Impacts on environmental illumination conditions: Am-
bient light can interfere with the readings of the MSI camera,
which can negatively impact the performance of FreshSpec.
Thus, we investigate the performance of FreshSpec under
various realistic lighting conditions. We consider four typical
light settings: bright (about 550 1x), normal (about 250 1x), dim
(about 50 1x), and dark (0 1x). From the results presented in
Figure 19, we can observe that, FreshSpec’s performance un-
der different light conditions is very stable. This benefits from
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Fig. 23. FreshSpec performance on generalization to various sashimi sample
thickness.

the background subtraction steps during the data preprocessing
pipeline. Meanwhile, we find that FreshSpec’s performance
consistently overwhelms the baseline in all light conditions.

3) Impacts on sample locations: As shown in Figure 1, the
sashimi samples are not directly put in the central area beneath
the camera. In most cases, FreshSpec captures images of the
sample with various degrees. Thus, to evaluate the robustness
of FreshSpec under various sample locations. We consider the
central area and four edge locations, each containing approx-
imately 30° angle with the center of the camera. Figure 20
demonstrates the results, which indicate that FreshSpec is
robust to various locations. This is because we utilize a circle-
distributed light source that can uniformly illuminate the area.
Additionally, by utilizing the cropping step, we only extract
the smooth and central area of the sample to conduct analysis,
thus avoiding problems caused by uneven light illumination.

4) Impacts on distance of samples and the device: As
shown in Figure 21, FreshSpec is deployed at the top of
the showcases. Considering the different sizes of the sashimi
showcases, the distance between the sashimi samples and the
camera is varying. Thus, we investigate the performance of
FreshSpec by putting the sample at different distances to the
camera, including 10 cm, 15 cm, 20 cm. The results are
depicted in Figure 21. We can find that the performance of
FreshSpec is consistently better than the baseline. However,
with the sample getting closer to the camera, the performance
of FreshSpec slightly decreases. This is because the focus
distance of our selected MSI camera is larger than 20 cm. If
the sample is too close to the camera, the captured images are
unfocused and contain undesirable noise, which may influence
the spectral analysis. Fortunately, the height of sashimi show-
cases is generally above 15 cm, within the working distance
applicable in our multispectral camera.

5) Impacts on sample size: The fresh food stores may
provide various size of the sashimi samples for selling. Thus,
it’s necessary to investigate FreshSpec ’s robustness on various
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sizes of the sashimi samples, especially on small sizes. We se-
lect three different sizes of the samples, including 3 x 1.5e¢m2,
6x3cm?, and 9x 3cm?. Figure 22 shows the results comparing
with the baseline. It’s obvious that both FreshSpec and the
baseline degrade with the sample size decreasing. Since small
samples generate small MSI image patches, which contain less
spatial information of the data, it’s reasonably harder to get
an accurate prediction. Nevertheless, we notice that even with
a small sample size of 6 X 3c¢m?, the RMSE of FreshSpec is
still less than 4 mg/100g. And the degradation of FreshSpec is
much slighter than the baseline with the sample size squeezing,
which indicates better robustness of FreshSpec as compared
with the baseline. For the very small size of 3 x 1.5em?,
we can utilize super-resolution methods to enhance the spatial
information, which will be taken into our future work.

6) Impacts on sample thickness: The sample thickness of
the sashimi thickness may also vary in the stores selling
showcases. sashimi samples of different thicknesses may affect
the reflection and scattering of light within the sample. For
example, a thicker sample would absorb a lot of incoming
light, reducing the intensity of the reflected light. Thus, we
evaluate the robustness of FreshSpec under various thicknesses
of the samples, including 2cm, 4cm, 6¢cm, and 8cm. Figure 23
illustrates the results, from which we can see that the RMSE of
FreshSpec continuously increases with increasing thickness of
the sample. This is because the thick sashimi samples absorb
more light thus decreasing the collected MSI image quality,
making the histamine prediction harder. But we notice the
RMSE increasing speed is slowed down once the sample is
thick enough, which indicates the lower boundary of Fresh-
Spec’s performance. The performance degradation caused by
sample thickness can be solved by adding a stronger light
source. Currently, we use only 7-LED bulbs, out of the energy
reserving consideration, which can be extended to more LEDs
in the future.

7) Impacts on irregular temperature and humidity changes:
In real-world applications, the temperature and humidity in
display showcases may fluctuate in an uncontrolled manner
over time, due to frequent opening of the cabinet or directly
exposing to external air. We replicate such scenarios with
irregular temperature and humidity changes over 3 hours, by
laying ice in our sashimi showcase and randomly opening
the cabinet for random durations in each hour. Table VI
displays the temperature and humidity measured every 30
minutes. The temperature and humidity variation speeds are
irregular, e.g., slow temperature changes within 60 min to
120 min, rapid changes within 120 min to 180 min. After
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EXPERIMENT SETUP OF FIGURE 24: TEMPERATURE AND HUMIDITY
CHANGES OVER TIME

[ Time [ Temperature | Humidity |

Init 25.1 °C 47%
0 min 5.0 °C 64%
30 min 6.3 °C 74%
60 min 9.8 °C 80%
90 min 10.6 °C 83%
120 min 109 °C 84%
150 min 152 °C 80%
180 min 17.3 °C 78%

freezing its temperature to 5°C, we start our evaluation of
FreshSpec on 8 salmon samples, which are divided into 4
groups corresponding to O hour, 1 hour, 2 hour and 3 hour
for ground truth collection (destructive collection, only once).
We collect MSI images every 30 minutes for each sample
during the monitoring. Figure 24 demonstrates the results.
Benefiting from FSR’s mechanism of filtering histamine-
irrelevant information such as environmental noise, Fresh-
Spec can maintain a fine prediction performance regardless
of the changing rates of temperature and humidity, which
evidently outperforms the SOTA scheme as well. When the
temperature and humidity approach the normal setup as our
training samples, the performance would be higher. Besides,
our UCA method works well under irregular temperature
and humidity variations. This is reasonable because UCA’s
mechanism relies on only the histamine accumulation property,
and independent of the histamine increase speed variations.
Under such irregular variations between two timestamps, more
error cases of base regressor in UCA could be revealed. This
can enhance calibrating the regressor to better focus on the
unique spectral characteristics of each sashimi sample.

VI. DISCUSSION AND FUTURE WORKS

In this section, we will discuss the FreshSpec’s limitations
and potential extensions.

Various Sashimi Types. In this paper, we consider his-
tamine monitoring on three common sashimi types (i.e.,
salmon, tuna, and snapper). FreshSpec develops separate mod-
els for each sashimi type, as their differing compositions may
present distinct confounding spectral features for histamine
regression. In practical applications, we can classify each
sashimi sample based on their visual differences using im-
age identification methods, and then apply the corresponding
regression model for accurate histamine prediction. Moreover,
for any new sashimi type, our FSR model can be fine-tuned
with its extracted histamine-related spectral features via few-
shot learning. Then, we can follow the same pipeline to



develop a suitable regression model. Our UCA method will
continuously update the regression model for each sashimi
sample, working independently of the sashimi types.

Coverage Expansion. The robustness results confirm that
for each frame, regardless of the salmon’s position within the
camera’s field of view (FOV), FreshSpec consistently performs
satisfactorily. If the sample is placed outside the FOV, we can
deploy the multispectral imaging camera on a rotating head
that can adjust to different angles to cover the entire showcase
range and collect a MSI video for further analysis, which will
be explored in our future work.

Extension Applications. While FreshSpec is designed for
histamine monitoring, its feature-wise spectral reconstruction
(FSR) method applies to other spectral reconstruction anal-
ysis problems, where redundancy and errors are common
in reconstructed spectral data. Compared to existing spectral
reconstruction models, FreshSpec’s FSR architecture demon-
strates significantly improved performance for the same tasks,
enhancing low-cost spectral systems’ ability to detect trace
elements which require high-quality spectral data. This allows
FreshSpec to extend its use beyond sashimi histamine mon-
itoring to other food products with precise spectral analysis
needs for trace elements. For example, detecting meat’s total
volatile basic nitrogen (TVB-N) [64] or vegetable’s pesticide
residues [65]. The SFM encoder in FSR can be fine-tuned with
these trace elements’ feature distribution, thereby enabling
FSR to reconstruct relevant spectral features.

VII. CONCLUDING REMARKS

This paper introduces FreshSpec, a low-cost spectral imag-
ing system tailored for precise histamine examination in
sashimi, operating autonomously without human intervention.
To achieve this, FreshSpec employs a novel feature-wise
spectral reconstruction framework that minimizes irrelevant in-
formation and redundancy while preserving critical histamine-
related spectral features, aided by a spectral foundation model
encoder. Additionally, FreshSpec introduces an unsupervised
model improvement scheme that leverages the monotonic
accumulation properties of histamine over time, allowing the
model to continuously adapt and improve with new sashimi
samples during practical deployment. Experimental evalua-
tions demonstrate that FreshSpec achieves a high accuracy in
histamine monitoring, with an average R2 value of 0.9319
and RMSE value of 3.101 mg/100g across three types of
240 sashimi samples, significantly outperforming the baseline
with a 0.1631 R2 improvement and a 46.95% RMSE reduc-
tion. FreshSpec shows great promise for direct deployment
in sashimi stores and fresh food restaurants, ensuring the
freshness and safety of food products.
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