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Abstract

Photovoltaic (PV) defect detection is crucial for preventing
power efficiency loss and fire hazards. The industry primarily
relies on the fusion of infrared and visible images for defect
localization and diagnosis. However, current detection meth-
ods exhibit poor generalizability in new site environments
or with altered imaging setups. While recent infrared and vi-
sion foundation models (FM) facilitate domain-invariant fea-
ture maps extraction, directly concatenating them and fine-
tuning achieves limited generalizability gain to PV defect
detection, due to the asymmetric dual-modal semantics of de-
fects. In this paper, we present the first large infrared-visible
model DD-LIVM to enable cross-domain defect detection.
The key innovation of DD-LIVM lies in its defect-specific
three-step fine-tuning strategy, which utilizes alternating
modality masking. Prior to feature fusion and joint fine-
tuning, the infrared and visible FM encoders are alternately
masked and optimized to enhance their individual semantic
utility for defect localization visibility and classification gran-
ularity, with feature distances among different defect types
regulated through contrastive learning. This approach allows
for the extraction of generalizable and defect-specific fea-
ture maps. Moreover, for practical employment of DD-LIVM,
we propose a domain-agnostic spatial alignment algorithm
for infrared-visible images before dual-modal fusion, and
develop source data augmentation and adaptive detection
head selection schemes based on defects’ infrared charac-
teristics to further enhance the generalizability. Extensive
experiments on 7,078 dual-modal images from 9 real-world
scenarios across 4 cities’ PV stations demonstrate that DD-
LIVM achieves an accuracy of 87.7% for cross-domain defect
detection, surpassing state-of-the-art methods by 17.3%.
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1 Introduction

As critical infrastructure for renewable energy, the global
deployment of photovoltaic (PV) systems has significantly
reduced fossil fuel dependency and accelerated the green
energy transition [31, 33, 37]. Regular defect detection of
PV panels is essential, as undiagnosed issues-such as grass
occlusion or circuit failures-can severely degrade power gen-
eration efficiency, compromise grid stability, and even pose
fire hazards [1, 18, 41]. Currently, the mainstream industrial
solutions employ autonomous drone inspection technology,
which fuses the drone-captured thermal infrared images
and visible light images to automatically locate the PV
defects and diagnose the defect types [9, 19], as shown in
Figure 1.

However, existing PV defect detection methods [5, 9, 19,
35, 48] often produce models whose extracted defect fea-
tures are entangled with domain-dependent contexts. This
reliance on specific data distributions results in low gener-
alizability when faced with data heterogeneity caused by
new environmental conditions (e.g., terrain backgrounds, so-
lar irradiance levels) or altered imaging setups (e.g., camera
intrinsics and extrinsics, drone flight altitudes). This limita-
tion forces repetitive labor-intensive data re-collections and
manual defect re-annotations for constant model fine-tuning,
failing to enable cross-domain defect detection. Current do-
main generalization methods [4, 15, 23, 45] also have poor
performance under the above complex and variable domain
shift factors, such as frequent changes in solar irradiance
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or ambient temperatures. In recent years, the emergence of
infrared foundation models (FMs) has facilitated the extrac-
tion of domain-invariant infrared feature maps [26]. When
combined with vision FMs, this presents an opportunity to
enhance the generalizability of PV defect detection. Despite
this, directly concatenating them and jointly fine-tuning
cannot achieve satisfied generalization performance. This is
because the infrared and visible semantics of PV defects have
independent physical mechanisms (i.e., electrothermal char-
acteristics and appearance morphology, respectively) and
are not a simply complementary relationship [18], which
can lead to feature misalignment and model overfitting to
source training data. For example, diode malfunctions incur
hotspots in infrared images without any cues in visible im-
ages, while the visible encoder may excessively learn the
location contextual information of diode malfunctions in
the training images during intuitive fine-tuning, yielding
source-domain overfitting.

To fill this gap, we dive into the dual-modal semantics dif-
ference of internal and external defects, and observe that 1)
infrared images can capture defect-induced hotspots with all
defects’ location information, but only four low-resolution
shapes, and thus fail to distinguish the specific forms of in-
ternal and external defects; 2) visible images contain only
external defects’ location information and appearance fea-
tures such as grass obstruction, while internal defects are
totally invisible. Consequently, these two modalities serve
distinct semantic purposes regarding localization visibility
and classification granularity for different types of defects.
Thus, the primary challenge during fine-tuning is optimizing
the dual-modality encoders to leverage their separate seman-
tic utilities, thereby mitigating the risks of source-domain
overfitting.

In this paper, we present DD-LIVM, the first large infrared-
visible model to enable precise cross-domain detection for ten
common types of PV defects without any prior information
of new domains. Our detection framework merges the latest
FM encoders of infrared and visible modalities to extract
feature maps, and incorporates a novel contrastive learning
head for regulating feature gaps of different defects besides
standard detection heads. To address the above challenge
associated with defect semantics, we innovatively develop
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a defect-specific three-step fine-tuning strategy (DTFT)
for the dual-modal pretrained FM encoders using alter-
nating modality masks. The process is as follows: First, we
mask the visible module and fine-tune the infrared encoder
to focus on hotspot localization and categorize the ten types
of defects into four classes based on hotspot shapes. The fea-
ture gaps of distinct-shape defects are enlarged while gaps of
same-shape defects are reduced, through contrastive learn-
ing. Second, with the infrared module masked, we fine-tune
the visible encoder to concentrate solely on detecting visible
external defects. The internal defect features are grouped
together with increased distance from external defect fea-
tures. Finally, we jointly fine-tune both encoders without
any modality masks on the all-type defect detection task,
aligning the location information of external defects and
fusing dual-modal incomplete defect classification informa-
tion for finer granularity. Through this iterative three-step
fine-tuning, we achieve semantic-level dual-modal fusion,
resulting in generalizable and defect-specific infrared-visible
feature maps for cross-domain defect detection.

Moreover, we propose two further designs for the prac-
tical employment of DD-LIVM. Firstly, before dual-modal
fusion, the collected infrared and visible images should be
spatially aligned. Since the view and position offsets of new
domains may totally differ from the source domain due to
varying camera parameters or drone altitudes and have no
prior information, spatial alignment is hard to achieve. To
this end, we propose a universal spatial alignment algo-
rithm for dual-modal images based on the consistency of
two images’ PV panel widths and relative positions, by ex-
tracting the contours of PV panels after background removal.
Secondly, due to the tiny size and irregular shapes, infrared
hotspot detection may still be affected by variant domain
shifts. To overcome this, we leverage the hotspot shape and
temperature distribution (HSTD) information for source
data augmentation and adaptive detection head selec-
tion. The former simulates image transformation according
to HSTD changes with environments, thereby increasing the
source-domain diversity of hotspot forms. The latter adds
HSTD similarity-based defect sample perturbation to target
images to select the detection head with high robustness.

We implemented DD-LIVM with over 400 million param-
eters and collected a dataset of 7,078 infrared and visible
images featuring 7,297 defects across 10 defect types from
real-world PV power stations in four cities, encompassing a
total of nine different settings for evaluating generalizabil-
ity. This dataset covers a broad spectrum of domain shift
factors - site terrain backgrounds, camera devices and posi-
tions, drone flight heights and views, ambient temperature
and solar irradiance. Experimental results demonstrate that
the average accuracy of DD-LIVM can reach 87.7% in cross-
domain defect detection, outperforming the SOTA schemes
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by 17.3%. Moreover, DD-LIVM can achieve above 80% detec-
tion accuracy under all nine settings.
In summary, our main contributions are as follows.

o To the best of our knowledge, we introduce the first large
infrared-visible model DD-LIVM that enables cross-domain
PV defect detection. DD-LIVM can generalize to varying
site environments and imaging setups without requiring
any prior knowledge.

e We present a defect-specific three-step fine-tuning strat-
egy to optimize the infrared and vision FM encoders for
semantic-level fusion regarding defect localization visi-
bility and classification granularity, based on alternating
modality masks. Consequently, generalizable and defect-
specific feature maps are obtained in DD-LIVM.

e For practical employment of DD-LIVM, we propose a
domain-agnostic spatial alignment algorithm for dual-modal
images based on the consistency of PV panel widths and
relative positions. Besides, we develop HSTD-based source
data augmentation and adaptive head selection schemes
to enhance tiny hotspot detection across domains.

e We collect a dataset of 7,078 dual-modal images with 7,297
defects in real-world PV stations under nine scenarios with
various environmental and imaging conditions. Our exper-
iments over it verify DD-LIVM’s superior generalizability
in defect detection. The dataset samples of dual-modal
images are publicly released in [8].

2 Background

Before elaborating on DD-LIVM’s technical details, we in-
troduce some backgrounds of this work.

PV Panel Defects. PV panel defects with 10 common
types in Figure 1 can arise from diverse physical factors [41].
For example, vegetation and facility obstruction caused by
nearby trees or buildings create local current mismatches,
which are visible on the PV panel and also trigger thermal
stress and hotspots. Electrical failures like string short cir-
cuits from insulation breakdown or open circuits due to
connector corrosion or solder fatigue, are completely invis-
ible and induce hotspots as well. Hence, both infrared and
visible images are required to detect these defects.

Defect Detection. As a similar task to object detection,
defect detection follows the backbone-neck-head framework
[24, 36] as well, where the backbone extracts the infrared-
visible feature maps, the neck conducts feature aggregation
or fusion, and the head utilizes the fused features to predict
the defect locations and types. So, the backbone is critical
for obtaining generic defect features.

Current backbones perform poor generalization capability
[19, 20, 38, 39] due to the entanglement of defect features
with domain environmental contexts when simply using
YOLO [20, 50], CNNs5s [28, 39] or shallow vision transformers
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Figure 2: Collected visible and infrared images in dif-
ferent domains (#1~#4). Compared with #1, #2 differs
in camera position and flight altitude, #3 evidently dif-
fers in terrain backgrounds (plain to rooftop), and #4
additionally differs in solar irradiance.

[3, 38] for feature extraction. Accordingly, current detec-
tion methods cannot apply to new domains with complex
shifts (see Figure 2). Additionally, for current dual-modal
object detection, even the SOTA solutions GM-DETR [47]
and DPDETR [11], still focus on dual-modal better fusion on
a single dataset and their backbones fail to extract generic
features of defects as well.

Infrared and Vision FMs. Recent years have emerged
the first infrared FM, InfMAE [26], which is trained with
large-scale 305K infrared images in different environments
and demonstrates powerful learning capabilities of general
representations with designed three multi-scale encoder lay-
ers. Besides, among all popular vision FMs [2, 30, 46], the
SOTA one for object detection generalization, i.e., FM-FSOD
[14] based on DINOvV2 structures [34] is also proved to sur-
pass detection-specific methods by integrating with existing
detection heads. Thus, we can leverage the two FM encoders
as backbones to extract infrared and visible features, respec-
tively. Note that, currently there is no existing infrared-visible
multimodal FM.

Challenges in Applying FMs. We can concatenate the
feature maps from the two modalities’ FM encoders as the
backbone output for defect detection. Since defect detection
has unique physical representations that totally differ from
object detection in autonomous driving or remote sensing
fields, it is necessary to fine-tune the FM encoders together
with the detection heads.

However, direct concatenating and fine-tuning them will
lead to feature misalignment and model overfitting to source-
domain training images, because infrared-visible semantics
are not simply complementary and one modal’s encoder may
excessively learn semantically irrelevant information from
the other modal. Therefore, the dual-modal FM encoders
cannot be intuitively fine-tuned to the defect detection field
for generalizable feature extraction.

3 System Design

In this section, we will introduce the detailed design of DD-
LIVM. Figure 3 shows the working pipeline and framework
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Figure 4: Spatial alignment for visible-infrared images.

of DD-LIVM, which consists of three main parts. We will
first elaborate on our novel spatial alignment algorithm for
infrared and visible images and how to preprocess them
in § 3.1. Then, we will describe the model details and our
defect-specific three-step fine-tuning (DTFT) strategy based
on alternating modality masks and contrastive learning, in
§ 3.2, which serves as our core technical breakthrough to
enable cross-domain detection. Moreover, we will present
the source data augmentation and adaptive detection head
selection schemes based on HSTD information in § 3.3, for
further generaliability enhancement.

3.1 Spatial Alignment and Preprocessing

Before fine-tuning models to fuse infrared and visible feature
maps, spatial alignment of the two modalities is essential.
Due to the differences in the position, resolution and distor-
tion of infrared and visible cameras, the practically collected
two-modal images are misaligned. And this misalignment
varies across different domains (e.g., differing camera models,
installation offsets, or drone altitudes). For the target domain
with no prior information, it’s hard to achieve effective align-
ment because 1) both feature-based and region-based align-
ment methods [13] struggle due to cross-modal heterogene-
ity in textures and intensity profiles; 2) deep learning-based
pixel-level alignment modules in past works [43, 44] cannot

Figure 5: Spatial alignment results of #1~#4 domains.
generalize to new domains under varying view and position
offsets.

To address this challenge, we propose a universal spatial
alignment algorithm based on the consistency of PV panel
widths on two-modal images, without knowing the internal
and external parameters of camera or drone altitudes in new
domains. Here, "consistency" denotes that while there is a
scaling ratio gap between two-modal images collected at one
time, the physical size of an individual PV panel is consistent
across both modalities. This consistency applies to each panel
individually and does not require different panels to have
the same size.

The target of our algorithm is to get the scaling and position
offsets between dual-modal images. As shown in Figure 4, our
algorithm contains the following steps. First, we fine-tune the
SOTA open-source model (RMBG-2.0 [52]) for background
removal and retain only the PV panels’ regions, based on
the source-domain labels of PV panel’s locations. Specifically,
the RMBG-2.0 model is fine-tuned with the following loss:

Loy = a1 Lssim(LT) + oy Lpep(LI) +as- L11(L1) (1)
where I is the raw image regardless of modalities, I’ is the
ground truth mask image where only PV panels’ regions
exist. Lssim, Loce and £ denote the dimensionless struc-
tural similarity, binary cross entropy and absolute difference
for pixels between I and I’, respectively. The weights a3, a,
and a3 follow the same setting in [52].
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Accordingly, we can obtain the mask images of two modal-
ities. Next, we erode the mask images to eliminate edge
glitches for precise contour extraction. Then, we can derive
the contours of PV panels in dual-modal images respec-
tively, and possible outlier regions as well, which could be
removed according to the region area. As we fine-tuned the
background removal model to our PV scenario with suffi-
cient images from source-domain sites, the contour extrac-
tion after background removal can achieve fine performance.
Following this, we can get the minimum circumscribed rec-
tangle of PV panels’ contours in two images and find the
ones with maximum PV panel width. By comparing the
maximum widths of visible and infrared images, we can cal-
culate the scaling value between dual-modal images. Then,
after resizing the image with smaller scaling, we can conduct
template matching for dual-modal images to match the
locations of non-masked PV panels, and crop this area for
alignment. In this work, the optical axes of the dual cameras
onboard the drone are parallel. Our algorithm can also be
easily extended to the cases of non-parallel optical axes by
adding the rotation matrix estimation to reinforce template
matching. Note that these operations are all conducted on
mask images after background removal, instead of raw im-
ages. By saving the cropped areas’ location and re-scaling
it, we can extract the corresponding area on the raw im-
ages, thereby achieving the dual-modal spatial alignment in
different domains.

Figure 5 demonstrates the spatial alignment results of
four different domains. Compared with the raw images in
Figure 2, we can see the effectiveness of our proposed spatial
alignment algorithm, when the background is not complex
and contains fewer objects. Correspondingly, the ground
truth of PV defects will be adjusted based on the aligned
region. The cropped part will not affect the defect detection
because during the inspection, the drone moves slowly to the
top of each PV panel to capture images, and each defect will
appear in both modalities’ images at a certain time without
missing. Next, we conduct preprocessing operations on the
aligned dual-modal images. We normalize the pixel value of
infrared and visible images respectively and resize them to
the unified shapes. Besides, we design augmentation methods
on them (introduced in § 3.3), not limited to traditional ways
like cutout or mixup [49].

3.2 Defect-specific Three-step Fine-tuning

The aligned and processed infrared-visible images will be
inputted into our defect detection model.

Model Structure. As mentioned, our model exploits the
infrared FM encoder from InfMAE [26] and the visible FM
encoder from FM-FSOD [14] as backbones to extract feature
maps. The infrared encoder has three blocks with output fea-
ture maps with different shapes: 112Xx122x256, 56X56x384
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Figure 6: Defect-induced four hotspot shapes.

and 28x28x768. Then, the last-layer feature map can be
downsampled to 14X14x768 by a convolution layer with
a kernel size of 3, stride of 2 and padding of 1. Here apply-
ing multi-scale feature maps is necessary, because our 10
types of defects have different sizes. For example, the so-
lar reflection defect has a large region but the dust defect
has an extremely small size. Shallow and high-resolution
feature maps can benefit detecting small-size defects while
deep and low-resolution feature maps are more suitable to
search large-size defects and extract defect semantics. Mean-
while, for visible FM encoder with 24 vision transformer
(ViT) blocks, since the output of each ViT block is with the
same resolution, we accordingly extract the 4, 8, 12 layers’
output feature maps and add them to the 24-layer output,
with weights of 0.5, 0.2 and 0.1 respectively. Thus, besides the
final-layer output itself, we can obtain other three feature
maps with the shape of 56x56x1024 and then downsam-
ple or upsample them to 112x112x1024, 28x28%1024 and
14%14x1024 through average pooling or unpooling layers,
which corresponds to the infrared feature maps. Then, we
are able to concatenate them to the dimensions of 1280, 1408,
1792 and 1792 during feature fusion and form four-scale
infrared-visible feature maps for defect detection with differ-
ent defect sizes. By above combining visible and infrared FM
encoders and concatenating their feature maps, we obtain
the basic structure of our large infrared-visible model. This
model is dedicated to PV defect detection after fine-tuning,
rather than a foundation model for various tasks.

However, the challenge here is that, direct concatenating
and fine-tuning the model does not perform well and yield
overfitting to source-domain training data. Different from
object detection in autonomous driving or remote sensing,
PV defects have special visible-infrared semantics. For example,
what infrared images capture is the hotspot, instead of the
same physical object entity with visible images. As shown
in Figure 1, the internal damage can cause the hotspot but is
invisible (thus not appearing in visible images). So, intuitive
fine-tuning will push the visible encoder to excessively learn
the incorrect location contextual information, leading to
source-domain overfitting.

To this end, we investigate the dual-modal semantics of
PV defects [18, 41] and get two observations. On one hand,
infrared images can capture hotspots with all defects’ loca-
tion information, but with only four low-resolution shapes
(point/block, strip, bar and region). As shown in Figure 6,
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dirty, dust, internal or external damage will induce point-
like or small block-like tiny hotspots. Diode failure and
grass/trees obstruction yield strip-like hotspots due to their
inherent shapes. String short circuit makes bar-like larger
hotspots with uneven temperature distribution. String open
circuit, facility obstruction and solar reflection can cause a
large area paralyzed, thus having region-like hotspots. So,
infrared images are hard to distinguish the specific defect
forms, for example, the dirty and internal damage. On the
other hand, visible images contain only external defects’
information including grass/trees, dirty, facilities, dust, ex-
ternal damage and solar reflection, while internal defects
including diode failure, internal damage, string open circuit
and short circuit are totally invisible. Therefore, the two
modalities have separate semantics utility regarding the lo-
calization visibility and classification granularity of different
partial defects. Based on this, we can add a modality masking
mechanism to alternately fine-tune one of the infrared or
visible encoders while masking the other. This envision can
steer the optimization of dual-modality feature maps toward
their respective semantic strengths, thereby helping reduce
overfitting risks to the source domain.

Three-step Fine-tuning Strategy via Alternating Modal-

ity Masks. To transform the above idea into reality, first we
incorporate a novel contrastive learning head for regulating
feature gaps of different defects (see Figure 7) besides stan-
dard detection heads. According to the ground truth location
of bounding box, we can obtain its corresponding features
in the feature map through ROI align [16]. And based on the
ground truth defect type, we can get positive and negative
samples for each defect sample. We utilize the features’ Eu-
clidean distance after average pooling to the shape of 1X1xC
to measure the feature similarity where C is the feature map’s
dimension, as the bounding boxes of different defects have
diverse spatial sizes which are also probably not proportional.
Then, we conduct the three-step fine-tuning as follows.
Step 1: Mask the visible encoder, fine-tune the infrared en-
coder. We regroup the 10 types of defects into 4 new cate-
gories according to their shapes in Figure 6 and construct
positive-negative samples based on these 4 categories. Then,
as the pink branch in Figure 3, we lead the infrared encoder
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Algorithm 1: DTFT Strategy.

Input: Data: Dual-model training image set 7; and Zy;s,
corresponding ground truth bounding box set
and class label set C; Model: The infrared encoder
®;, (), the visible encoder ®,;s(+). Head losses:
Zir (1), Zois(+) and Ly () including detection
head and contrastive head losses.

Output: Optimized encoders @} (-) and ®

detection head.

’

4is (1), and overall

1 Initialize pretrained infrared and visible encoders ®;,(+)

and @y (+).
2 while iteration=1,2, ...,I do
3 if iteration < y then
4 Update ®;,(-) by minimizing the loss of

ZLir(®ir(Zir), P, C) with 4-class feature
regulation based on hotspot shapes.

5 Update ®y;s(-) by minimizing the loss of
Lois(Qois (Lyis), P, C) with 7-class feature
regulation where internal defects’ locations in P
are used.

6 Fuse the feature maps ®@;,(Z;;) ® Ppis(Lpis), and
Update ®;,(+), @i (-) and overall detection head
by minimizing the loss of

jfull (‘bir (Iir): Dyis (Ivis), P, C)

7 else
8 Freeze two encoders ®@;,-(-) and ®y;s(+) and
fine-tune the overall detection head.
9 end
10 end

to the existing detection head and our contrastive head. The
detection head oversees the hotspot regions localization and
4-class coarse-grained classification, with the detection loss
Zier- The contrastive learning head is used to enlarge the
feature gap of distinct-shape defects and weaken that of
same-shape defects. The overall loss can be formulated as:

L= Py Laor+ PoyeZN [FP) - FEDF

—pr e - FeDF @)
where the F(P) denotes the features at position P. F(P~) and
F(P*) are features of negative samples and positive samples,
where N and M denote their quantities in a batch respectively.
The weight setting of ,, B, and f, refers to § 4.1.2.

Here for the positive samples, we add a soft constraint in-
stead of fully shortening their gaps, since same-shape defects
may still have different sizes displayed in infrared images
(e.g., grass/trees). That is, for each defect, if the same-shape
defect with a size difference larger than half of itself, we will
not regard it as positive sample.

Step 2: Mask the infrared encoder, fine-tune the visible en-
coder. Similarly, we can regroup all the 4 internal defects into
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,_;

Figure 8: The cross-domain detection results w/o and
w/ using DTFT strategy.

the same category and act as negative samples to the other
6 external defects. Following the blue branch in Figure 3, the
detection head focuses on the regression of 6 external defects’
locations and their classification. The regrouped category of
internal defects is only used in contrastive head instead of
classification task, and their features’ positions are derived
by the ground truth of aligned infrared images. Then, we
can get a similar loss to Equation 2 with the consideration
of feature gaps between mutual external defect categories,
and between them and the internal defect category.

Step 3: Feature fusion and jointly fine-tune two encoders.
After the first two steps’ separate fine-tuning, we follow the
black regular route in Figure 3, and conduct all defects’ de-
tection and feature regulation (step 3). During the training
of step 3, the fused feature maps will be further optimized to-
wards: 1) enhancing the localization information of external
defects in dual-modal images; 2) fusing incomplete defect
classification information of each modal in a fine-grained
manner. This step is performed after semantic-level separate
fine-tuning in step 1 and 2, and thus will not incur semantic
mismatch or source-domain overfitting.

For every iteration in the fine-tuning process, we con-
duct the above three steps for constant semantic-level
fusion of two modalities, as summarized in Algorithm 1.
When calculating the feature distances in Equation 2, we will
compute the average values on distinct scale’s feature maps.
To further prevent overfitting, After y epochs, we would
freeze the dual-modal encoders and only fine-tune the detec-
tion heads for the rest K —y epochs. The detection heads used
are FCOS [42] and MaskRCNN [17], and we have an adap-
tive selection scheme for the two head types, proposed in
§ 3.3. Finally, we can obtain generalizable and defect-specific
infrared-visible feature maps and enable cross-domain de-
tection.

Figure 8 shows the cross-domain detection results using
our three-step fine-tuning strategy with FCOS head. As com-
pared to that of direct fine-tuning, we can find the decreases
in false detection and missed detection samples. For example,
the incorrect detection of solar reflection, probably caused
by the visible encoder’s source-domain overfitting, would
not occur via our strategy. Nevertheless, there may still ex-
ist some incorrect cases such as external damage in Figure
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Solar Irradiance

Heat Dissipation

Figure 9: HSTD-based data augmentation samples.

8. This is potentially because the hotspot detection with
tiny sizes is still vulnerable to variant domain shifts [32].
Therefore, in the next subsection, we will conduct data aug-
mentation and head selection as assistance to enhance this.

3.3 HSTD-based Data Augmentation and
Head Selection

While current infrared FM accounts for diverse background
and contextual variations, industrial applications like PV
defect detection face domain shifts far exceeding conven-
tional vision scenarios due to intricate physical factors. For
example, the solar irradiance intensity and ambient tem-
perature critically influence PV module output power and
heat dissipation efficiency, thereby altering hotspot morphol-
ogy, intensity distribution, and spatial patterns [18, 41]. This
makes the detection of tiny hotspots remain vulnerable to
complex domain shifts.

To address this challenge, we propose to exploit the hotspot
shape and temperature distribution (HSTD) information for
source data augmentation and adaptive head selection, with
the following details.

Source Data Augmentation. We simulate HSTD changes
with environmental factors on infrared images’ hotspots
for data augmentation. First, considering the flight height
related to image resolutions, we crop the images into 1/4 and
1/9 and then resample them back to the original resolution.
For the solar irradiance, it affects the power consumption of
defective panel. For the wind speed and ambient temperature,
they affect the heat dissipation efficiency. Thus, we use the
Laplace operator to simulate the process of heat diffusion
and solar irradiance changes, and the pixel values of the
hotspot area are updated through iterations. Specifically, we
design a 3x3 Laplacian kernel V2 for temperature diffusion
to adjacent areas:

oT (x, n N2 m
% = O'VZT(x, y)’ Vz =172 -1 N2 (3)
i N2 m

where T(x,y) denotes the temperature value at position
(x,y) and o € [0, 1] is the thermal diffusivity to control
the diffusion rate. 5,7, € [0, 1] reflect heat diffusion effi-
ciency and o reflects more about solar irradiance level. Figure
9 gives the examples of temperature diffusion under modi-
fied o, 1 and 1. Thus, within five iterations’ diffusion, we
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can derive a series of augmented infrared images. Mean-
while, the augmented paired visible images are the same
ones without changes. Traditional image transformations
[49] including flip, rotation, Gaussian noise, and cutout are
jointly used for data augmentation. Through this approach,
the generalization of hotspot detection can be enhanced.

Adaptive Head Selection. Past domain alignment meth-
ods mostly follow the idea that models robust to perturbation,
usually locate in the flat minima region of the parameter
space and exhibit excellent generalization ability [51]. In-
spired by visual in-context learning, we consider to add a
same-type source-domain defect with minimum similarity
to its nearby 50x50 pixels’ region as the perturbation, for
each detected defect in target-domain infrared images. If the
detection result of this defect does not change after perturba-
tion, we deem that this detection model is robust and suitable
to the target domain. To measure the similarity and choose
the perturbation sample, we design an HSTD-based distance
between target sample and perturbation sample, from the per-
spectives of S“’”’;I’” and% where Scontour and Ceontour
are the size and perimeter of one defect’s contour after ap-
plying SAM model [22] to segment the defect’ bounding
box with width W and height H. The source-domain defect
whose sum distance from the two perspectives is maximum,
is chosen as the perturbation sample, and its region after
SAM segmentation is added to the target image.

Based on this, we can select the model suitable for tar-
get domains. First, in § 3.2, We train our model with two
types of heads (FCOS and MaskRCNN). As mentioned, after
y epochs, the dual-modal encoders will stop fine-tuning and
be frozen. Then, in the latter head fine-tuning, we save the
heads every 10 epochs, until K epochs. Accordingly, we can
measure the robustness of 2 - (K — y)/10 heads, through
adding the perturbation. We calculate the average intersec-
tion over union (IoU) before and after perturbation, for all
detected defects. Then we select the head with the maximum
IoU. In this way, we can obtain the detection head with the
least feature distribution discrepancy across domains.

4 Performance Evaluation
4.1 Experiment Setup

4.1.1 Datasets. Through drone-based inspection, we collect
real-world infrared and visible images in four cities’ practical
PV power stations (see Figure 10) under totally nine different
settings, denoted by #1~#9. The dual-modal images’ quanti-
ties in the nine scenarios are: 524, 296, 518, 2068, 1020, 842,
994, 566, 250 respectively, forming the dataset of totally 7078
dual-modal images. And the numbers of PV defects appear-
ing in the images are 612, 563, 548, 426, 1627, 973, 1958, 192,
398 respectively (7297 defects in total with 10 defect types).

Yinan Zhu, et al.
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Figure 10: Topographic map of a practical PV station
site for data collection, where the blue area denotes
the PV panel’s positions.

Table 1: Dataset Overview: for each target scenario,
same and different domain factors with the other eight
scenarios. “ST”, “C”, “P”, “H”, “T”, “S” denote the fac-
tors of site terrain, camera device types, camera posi-
tions, drone flight heights, ambient temperature and
solar irradiance, respectively“T”+ or “S”+ denote the
higher ambient temperature or solar irradiance (spe-
cific values are not controllable). Besides, the image
backgrounds vary across different scenarios.

Domain ‘ Same Factors ‘ Different Factors
#1 “ST” (#2) “C”, “P”, “H”, “T”, “S”
#2 “ST” (#1) “Cc”, “p”, “H”, “T”, “S”
#3 - “ST”, “C”, “P”, “H”, “T”, “S”
#4 “S”+ “ST”, “C”, “P”, “H”, “T”
#5 “S”+ “ST”, “C”, “P”, “H”, “T”
#6 “C”, “ST” (#7), “T"+ ¢ “P’, “H”S”
#7 “C”, “ST” (#6), “T"+ CCP”, “H”'S”
#8 “C”, “ST” (#9) “P”, “H”, “T”, “S”
#9 “C”, “ST” (#8) “P”, “H”, “T”, “S”

For #1~#9 scenarios, a broad spectrum of factors are cov-
ered: site terrain, backgrounds, camera devices and positions,
drone flight heights and views, ambient temperature and
solar irradiance, with different domain shift degrees. Specif-
ically, the data in #1~#2 are collected in the same station
with plain terrain, but with diverse camera positions, flight
heights and sunshine conditions (morning and afternoon,
respectively). #3 is independently collected over the rooftop
at noon. As compared to #1~#3, besides the basic gaps of
separate sites with varying camera models, backgrounds and
climates, the individual differences of #4~#9 are as follows.
#4 and #5 are under much stronger solar irradiance, #6 and #7
are under higher ambient temperature, and #8 and #9 are in
the sandland terrain. The discrepancy between #4 and #5 lies
in camera positions, flight heights and climate conditions,
which also applies to #6 and #7 as well as #8 and #9. Note
that the real-world PV defects need to be repaired as soon
as possible, and thus we are unable to control the variable of
individual environmental factor during data collection. For



DD-LIVM: Pioneering Cross-Domain Photovoltaic Defect Detection
Using Large Infrared-Visible Model

each target scenario, the same and different domain factors
with the other eight scenarios are summarized in Table 1.

4.1.2  Model Implementation and Training. For the spatial
alignment module, we fine-tune the RMBG-2.0 model [52]
for background removal, using the AdamW optimizer with a
learning rate of 10~¢ and batch size of 16. The loss weights a1,
a, and a3 are set to 0.1, 1 and 0.3, respectively. We train it on
an NVIDIA A100 GPU for 100 epochs. For the defect detec-
tion model, the infrared backbone (i.e., InfMAE encoder [26])
is pretrained on Inf30 dataset, while the visible backbone (i.e.,
FM-FSOD encoder [14]) is pretrained on LVD-142M dataset.
We load the two pretrained encoders to our DD-LIVM. Then,
we use the neck of FPN [25] and detection heads (FCOS [42]
and MaskRCNN [17]) in MMdetection Toolbox [6] for defect
detection. The neck’s input dimensions are modified to 1280,
1408, 1792 and 1792 to to be consistent with our fused fea-
ture maps, while its output remains 256 dimensions for the
heads. Our DFTF strategy is conducted for every batch of
data. For the first two steps’ fine-tuning, we similarly change
the necks’ input dimensions for the infrared branch and the
visible branch based on their separate feature map shapes, re-
spectively. During the overall fine-tuning, we use an AdamW
optimizer with an initial learning rate of 0.0001 and weight
decay of 0.1. The dimensionless loss weights are f; = 0.8,
P2 = 0.2, B3 = 0.2, and the data augmentation parameters
are 1 = 0.1, n2 = 0.4 with o € [0.1,0.3] randomly generated
during augmentation. Then, we set the batch size to 4 and
train our detection model for 300 epochs for convergence.
After 200 epochs, we freeze the two encoders’ parameters,
and only fine-tune the neck and detection head for the extra
100 epochs. Thus, we can get 10 FCOS heads and 10 MaskR-
CNN heads for selection. The detection models are trained
on 8x NVIDIA A100 GPU.

4.1.3 Baselines. We compare the performance of DD-LIVM
with the following baselines.

Two SOTA defect detection methods: (1) NIF [19] uses
YOLOVS5 to segment the visible PV array images into PV
modules and get the corresponding infrared ones. Then, it
exploits ResNet to detect the defects on PV modules’ infrared
images for coarse-grained diagnosis. (2) CDPC [5] employs
generative adversarial networks to augment the collected
dual-modal images and conducts data selection with pseudo-
label cross-entropy for CNN detection model training,.

Three SOTA infrared-visible object detection meth-
ods: (1) DAMSDet [12] employs a multispectral deformable
cross-attention module to adaptively sample and aggregate
multi-semantic level features for each object, thus realiz-
ing promising object detection. (2) GM-DETR [47] utilizes
self-attention operations on the dual-modal top-level CNN
features and then effective feature fusion across multiple
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scales, thereby greatly promoting the object detection per-
formance. (3) DPDETR [11] proposes a decoupled position
multispectral cross-attention module for complementary fea-
ture fusion with the constraint of dual-modal reference po-
sitions, thus achieving more robust object detection under
spatial misalignment.

The above 5 baselines are identically inputted with our
infrared-visible image pairs and output the detection results
of defects for model training or inference.

4.1.4  Evaluation Metrics. Referring to past defect detection
works, we exploit the metrics: (1) detection accuracy [5, 19]
and (2) mean average precision (mAP) with 0.4 IoU thresh-
old (mAP@40) [9, 21] for performance evaluation. For the
detection accuracy, it means that for each predicted defect’s
bounding box, we find the one with the maximum IoU value
in all ground truth defect bounding boxes in the image, and
then compare their defect classification results among 10
types. If the classification result is correct, we regard it as a
correct sample. For those predictions with zero IoU or false
classification results, we regard them as false samples. For the
mAP@40, this chosen IoU threshold of 0.4 is consistent with
existing works. Since the end goal of PV defect detection is to
let workers go and repair these defects on-site, fine-grained
localization precision with a very large IoU threshold (e.g.,
mAP@0.9) is not necessary in practical applications. Instead,
generally an IoU threshold of 0.4 or 0.5 is enough for PV
maintenance demands [9, 21].

4.2 Overall Performance

For each scenario, we use the other 8 scenarios’ images for
training (source domain) and this scenario’s images for test-
ing (target domain) for cross-domain evaluation. The data
in the target domain is completely unseen samples, with
diverse domain shifts from the source domain.

4.2.1 Cross-domain Performance with Baseline Comparison.
The overall prediction performance is shown in Table 2 for all
nine scenarios. As we can see, our DD-LIVM model achieves
an average detection accuracy of 87.7% across nine scenar-
ios, greatly surpassing the SOTA schemes by 17.3%. As for
the mAP@0.4, DD-LIVM can reach 80.6% while the SOTA
scheme is only 64.7%. This is reasonable because the feature
maps of DD-LIVM fit the defect semantic better and involve
more domain-invariant information to avoid source-domain
overfitting. In contrast, GM-DETR [47] and DPDETR [11] are
designed with the complementary paradigm of infrared and
visible features, thus not compatible with defect semantics.
Besides, the DD-LIVM’s accuracies under all nine scenar-
ios are over 80%, indicating its fine generalizability. Among
them, #2, #8 and #9 scenarios perform better than other sce-
narios, probably due to more training data increasing source
diversity. Differently, #3 scenario’s performance is limited
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Figure 11: Cross-domain detection visualization for #1~#4 scenarios. Green means the correct
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Table 2: Comparison with (1) SOTA defect detection methods and (2) SOTA infrared-visible object detection methods
under #1~#9 scenarios in our datasets. The detection accuracy is given, with mAP@0.4 in the bracket as well.

Model | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9
NIF [19] 0.27(0.19) | 0.22(0.18) | 0.33(0.25) | 0.35(0.27) | 0.38(0.29) | 0.25(0.16) | 0.21(0.18) | 0.42(0.36) | 0.43(0.32)
CDPC [5] 0.52(0.41) | 0.41(0.37) | 0.42(0.36) | 0.38(0.31) | 0.36(0.32) | 0.52(0.43) | 0.55(0.53) | 0.55(0.42) | 0.59(0.47)
DAMSDet [12] | 0.68(0.49) | 0.62(0.59) | 0.54(0.48) | 0.50(0.43) | 0.51(0.43) | 0.47(0.32) | 0.53(0.50) | 0.65(0.58) | 0.63(0.57)
DPDETR [11] | 0.71(0.61) | 0.75(0.71) | 0.63(0.60) | 0.64(0.53) | 0.60(0.47) | 0.56(0.42) | 0.60(0.57) | 0.74(0.64) | 0.79(0.71)
GM-DETR [47] | 0.74(0.68) | 0.76(0.74) | 0.60(0.58) | 0.62(0.50) | 0.70(0.62) | 0.72(0.71) | 0.70(0.68) | 0.76(0.64) | 0.75(0.68)

DD-LIVM

| 0.87(0.80) | 0.94(0.91) | 0.83(0.77) | 0.82(0.74) |

0.84(0.75) | 0.90(0.82) | 0.85(0.84) | 0.92(0.80) | 0.93(0.83)

Table 3: Comparison of Accuracy and Model Overhead

Model ‘ Accuracy ‘ Params (M) ‘ FLOPs (G)
DPDETR [11] 0.669 90.1 208.0
GM-DETR [47] 0.704 70.3 175.8
DD-LIVM (Alignment) / 220.2 533.6
DD-LIVM (Detection) 0.877 419.5 963.2

by terrain background gaps from plain to rooftop, which
induces large domain shifts. #4 and #5 also suffer from a
relatively low accuracy possibly due to its increased solar
irradiance levels beyond the model’s ability to resolve hot
spots. Despite that, the performance gains of #3, #4, #5 sce-
narios compared to baselines are significantly evident with
14%~23% accuracy improvement, which demonstrates our
designs’ superiority for cross-domain detection.

Moreover, from Figure 11, we can clearly observe that the
SOTA scheme leads to a lot of false detection and missed
detection phenomenons. For example, both internal and ex-
ternal defects are missed in #2 while excessive false detec-
tions of external damages occur in #4, primarily due to the
ineffective dual-modal fusion on defect locations’ visibility -

rooted in the unique semantics of PV scenarios. Instead, DD-
LIVM successfully addresses this through PV-specific DTFT
strategy based on alternating modality mask, thus showing
satisfactory detection results. Additionally, we find that some
false positive samples occur at the edge of a PV panel that
may be confused with edge damage or grass/trees obstruc-
tion samples, or affected by imprecise spatial alignment. We
may adopt a two-stage detection strategy to address this,
that is, firstly locating PV panels, segmenting them, and then
detecting the defects on each panel. This can avoid incorrect
detection at edges and also enhances tiny defect detection.
Nevertheless, this work does not follow this and employs
the idea of multi-scale feature maps alternatively, as this op-
eration may lose contextual information such as background
temperatures or accumulate the errors from PV panel local-
ization. We will explore its trade-off to further promote our
detection precision in our future works.

4.2.2  Performance of Different Defect Types. As given in
Table 4, we count each defect type’s accuracy. It is demon-
strated that different types of PV defects have distinct de-
tection performances. As compared to DPDETR [11], both
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Table 4: Performance of Different Defect Types

Type DPDETR | GM-DETR | DD-LIVM
[11] [47] (Ours)
Grass/Tree 0.783 0.818 0.861
Facility 0.841 0.823 0.937
Dirty 0.458 0.669 0.844
Dust 0.503 0.634 0.763
Exter Damage 0.626 0.691 0.872
Solar Reflection 0.813 0.868 0.956
Short Circuit 0.741 0.754 0.913
Open Circuit 0.656 0.605 0.925
Inter Damage 0.547 0.490 0.775
Diode Failure 0.728 0.742 0.933

GM-DETR [47] and our DD-LIVM model focuses more on
multi-scale feature maps fusion, thus enhancing the detec-
tion precision of tiny objects such as dust, dirty and inter
damages, which are always hard to distinguish across various
domains, especially with temperature (color depth of infrared
images) or drone’s height (image resolution) changes. The
grass/tree, facility obstruction and solar reflection are mani-
fest, thereby holding a high accuracy of over 80% even for
baselines. Due to little consideration of GM-DETR in spatial
offsets across domains, it leads to a series of incorrect detec-
tion of inter damages and extra damages, where the model
overfits to the incorrect visible features. By contrast, DD-
LIVM markedly promotes the accuracy of all defect types
through semantic-level fine-tuning and fusion, especially for
internal four defects. This is because our DTFT strategy can
help differentiate the external defects’ features apart from
those similar ones of internal defects in the infrared images,
by conducting separate fine-tuning before feature fusion.

4.2.3 Model Size and Overhead. As shown in Table 3, for
spatial alignment, DD-LIVM exploits the fine-tuned RMBG-
2.0 model based on BiRefNet [52] for removal background.
This model has a total parameter number of 220.2M with
533.6G floating-point operations per second (FLOPs). For the
subsequent defect detection, DD-LIVM merges the infrared
and visible FM encoders, thereby inducing 419.5M parameter
quantity with 963.2G FLOPs. The overall inference time of
DD-LIVM for an infrared-visible image pair on an NVIDIA
A100 GPU is 853.47ms, which meets the requirement of low-
latency usage. Since our models are deployed offline and
used after the drone inspection collects all the images, the
increased storage space and larger FLOPs of DD-LIVM are
acceptable on the server side. Note that, in practical PV sites,
currently the defect detection is all conducted after drone
inspection is completed and all collected images are uploaded
to the server. We follow this way and it does not need edge
deployment on the drone.
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Figure 12: Ablation study visualization for #1 scenario,
with comparison to Figure 11.

4.3 Ablation Study

Then we conduct an ablation study to verify the effectiveness
of each module of system designs in DD-LIVM (see Table 5).

4.3.1 Effectiveness of Our DTFT strategy. As compared to
the results of intuitive fine-tuning on two FM encoders, DD-
LIVM employing DTFT can promote the average detection
accuracy by 10.2%, indicating the effectiveness of semantic-
level fine-tuning. For example, as depicted in Figure 12, our
model without DTFT may excessively rely on the incorrect
contextual information of string open circuit in the visible
images during training, yielding false positive samples dur-
ing inference. By using DTFT, the understanding of features’
semantics will follow its physical mechanisms and circum-
vent overfitting. This conclusion holds for all nine scenarios,
with a few differences in accuracy gains due to distinct de-
fects’ distributions. In the scenario containing more defects
with difficulty to tell apart from only single-modal images,
the accuracy improvement would be greater. Moreover, even
without DTFT, DD-LIVM still outperforms the SOTA scheme
GM-DETR by 7.1%, due to the usage of FM encoders as back-
bones and inherent advantages of FMs’ generalizability.

4.3.2  Effectiveness of Our Spatial Alignment Algorithm. If
deleting our spatial alignment module and employing the
SOTA pixel alignment model [10] for this task, the perfor-
mance will be apparently degraded by 9.4%. This is because
DD-LIVM strongly hinges on the spatial alignment for its
contrastive head during DTFT. The feature mismatching will
greatly affect the regulated feature distances in contrastive
learning, resulting in a bad fusion of two modalities. Besides,
the misaligned external defects’ features will lead to model
overfitting. Yet, past pixel alignment models cannot gener-
alize to new domains with totally different camera views.
Instead, our alignment algorithm, based on the consistency of
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Table 5: Ablation study for four modules of DD-LIVM: Three-step fine-tuning strategy (DTFT), Spatial alignment
algorithm (SA) and HSTD-based data augmentation (DA) and head selection (HS).

Model | #1 | #2 | #3 | #4 | #5 | #6 | #7 | #8 | #9 | Avg

GM-DETR (SOTA) 0.735 | 0.760 | 0.599 | 0.620 | 0.697 | 0.718 | 0.702 | 0.758 | 0.754 | 0.704
DD-LIVM (w/o DTFT) 0.801 | 0.832 | 0.709 | 0.689 | 0.735 | 0.819 | 0.757 | 0.806 | 0.824 | 0.775
DD-LIVM (SA—[10]) 0.795 | 0.826 | 0.751 | 0.721 | 0.794 | 0.757 | 0.714 | 0.825 | 0.868 | 0.783
DD-LIVM (DA—OA-DG [23]) | 0.849 | 0.891 | 0.818 | 0.763 | 0.757 | 0.880 | 0.846 | 0.854 | 0.876 | 0.837
DD-LIVM (HS—MaskRCNN) | 0.817 | 0.909 | 0.776 | 0.758 | 0.745 | 0.850 | 0.834 | 0.822 | 0.841 | 0.817
DD-LIVM (HS—FCOS) 0.868 | 0.935 | 0.796 | 0.781 | 0.828 | 0.883 | 0.852 | 0.877 | 0.885 | 0.856

DD-LIVM

| 0.868 | 0.935 | 0.832 [ 0.817 | 0.836 | 0.904 | 0.852 | 0.920 | 0.928 | 0.877

physical PV panel widths, can apply to diverse new domains
with strong interpretability and generalizability. Figure 12
clearly shows how our alignment module benefits reducing
the false detection cases at PV panels’ edges.

4.3.3  Effectiveness of Our HSTD-based Data Augmentation.
As compared to the SOTA data augmentation method for
object detection, i.e., OA-DG [23], our data augmentation
based on HSTD owns a finer accuracy of 4%, as the small
hotspots which need augmentation most are vulnerable to
domain shifts of solar radiation and ambient temperature
changes. These augmentation factors are related to thermal
infrared characteristics, which past works do not consider.
For example, OA-DG cares only the foreground and back-
ground instances. Thus, our HSTD-based data augmentation
is a more appropriate choice for our PV scenarios, which can
also be combined with past methods for joint usage.

4.3.4  Effectiveness of Our HSTD-based Head Selection. DD-
LIVM have 20 detection heads with two types (FCOS and
MaskRCNN) trained for selection in different target domains.
If removing the head selection module and directly using the
FCOS head or MaskRCNN head at the last training epoch,
the detection accuracy of DD-LIVM will be decreased by 2.1%
and 6.0%, given that different source data with various distri-
butions and quantities should have a different optimal train-
ing parameters including the number of epochs. So, through
our head selection, we can further mitigate the source over-
fitting risks. Besides, in some domains (e.g., #1, #2 and #7),
DD-LIVM is not easy to overfit after semantic alignment and
data augmentation, where our head selection scheme serves
more as an insurance function. While for other domains like
#8 and #9, the gains are evident. Additionally, we can see
that under all nine scenarios, the FCOS heads all perform
better than MaskRCNN heads, probably because the anchor
settings in MaskRCNN are default hyperparameters that are
not generic across different domains.

Overall, the DTFT strategy and spatial alignment are two
essential modules for DD-LIVM’s performance, which corre-
sponds to our key contributions as well.

5 Related Work

In this section, we briefly review existing works from the
following four perspectives.

PV Defect Detection. Based on the drone-captured dual-
modal images, deep learning approaches are applied for de-
tect detection [3, 20, 28, 38, 39, 50], while most of them di-
rectly utilize the universal models in the field of object detec-
tion. For example, PA-YOLO [50] uses YOLOv?7 as backbone
and adds an asymptotic feature pyramid network for feature
fusion. Similarly, YOLOv5 and ResNet are used in [5]. These
works do not consider two modalities’ defect semantics in
model design and only train their simple models on small-
scale data from only a single site, thereby yielding very low
generalizability to environmental condition changes. In con-
trast, DD-LIVM utilizes the latest FM encoders and employs
three-stage fine-tuning on them according to defect seman-
tics, thus greatly promoting the generalization performance.

Infrared-Visible Object Detection. As a similar task,
current infrared-visible model frameworks for object detec-
tion [40] such as the SOTA ones GM-DETR [47] and DPDETR
[11], adopt a complementary fusion paradigm for dual-modal
features. That is, visible images provide the color and texture
details while infrared images enhance low-light visibility of
the same physical object. In these works, halfway fusion is
always operated to merge the dual-modal complementary in-
formation. Thus, they perform poorly in PV defect scenarios
and lead to model overfitting, since the dual-modal defect
semantics are asymmetrical and not a simply complementary
relationship.

Domain Generalization. For the prevailing domain gen-
eralization methods for object detection (e.g., OA-DG [23],
DivAlign [7]), whether through data augmentation, test-time
adaptation or meta-learning strategies [53], their efficacy crit-
ically relies on exhaustive source-domain data diversity to
achieve generalizable feature representations, since the fea-
ture map generalizability scales with the entropy of source-
domain distributions [29]. They inherently require sufficient
source data coverage to disentangle domain-invariant pat-
terns from spurious correlations. However, this data diversity
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remains constrained in PV defect datasets due to the difficulty
of large-scale data collection in practical stations and anno-
tation costs. Thus, the source diversity cannot cover various
domain shifts in PV scenarios, such as frequent changes in
solar irradiance or ambient temperatures, rendering existing
domain generalization gains marginal in PV scenarios.
Foundation Models. Recent years have witnessed the
rapid emergence of FMs in computer vision, which leverage
large-scale pretraining to extract generalized features appli-
cable to diverse downstream tasks [2, 14, 30, 46]. The feature
extractors of FMs, i.e., encoder modules, have been used as
backbones for object detection frameworks, such as FOMO
[54] and SyncOOD [27]. Currently, due to the lack of aligned
visible-infrared image pairs and unaffordable overhead to
collect for training, there is no infrared-visible multimodal
FM. Thus, in this paper, we attempt to fuse the infrared FM
encoder and visible FM encoder. And through our three-step
fine-tuning based on defect semantics, we can obtain a large
infrared-visible model dedicated to PV defect detection.

6 Discussion and Future Works

In this section, we will discuss the DD-LIVM’s limitations
and potential extensions.

New Defect Types. The design of DD-LIVM is not limited
to this paper’s ten common defect types, where our core
innovation (i.e., DTFT strategy) is scalable regardless of the
defect quantity. When facing a new defect type, the defect
regrouping criteria in DTFT could be accordingly updated
based on the new defect’s visibility in RGB images and its
induced hotspot shapes and sizes in infrared images. Given
this, integrating new defect types would only necessitate
adjustments to the loss function computation, leaving the
overall framework and training pipeline of DD-LIVM intact.

Defect Detection Precision. The effectiveness of DD-
LIVM may still be affected by 1) extremely small defects
under elevated flight altitudes; 2) sophisticated backgrounds
or occlusion in new domains, where spatial alignment perfor-
mance inevitably declines. Nevertheless, we can 1) conduct
a two-stage detection by locating the PV panel first and de-
tecting the defects on the segmented panel to enhance tiny
object detection; 2) harness more diverse background images
from other open datasets containing similar-size objects to
PV panels to augment the fine-tuning performance of our
background removal model in spatial alignment, preventing
extracting the contours of other background objects. Besides,
for occlusion issues, as the spatial alignment is actually for
dual-modal cameras’ calibration where the dual-modal scal-
ing ratio and position offset are fixed in one domain, in all
images during drone inspection, there must exist a few clean,
unobstructed images. So, we can use these clean ones to com-
pute the alignment parameters and use them for all images in
one domain. These approaches will be explored in our future

ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

work. Actually, such noisy-image cases are not common, as
most PV power stations are located in open areas.

Drone Operation Optimization. Currently, in practi-
cal PV sites, the drone is employed to collect the images at
a fixed height along a pre-defined trajectory. We also fol-
low this way in our work. As we can see, due to the size
differences of diverse defect types, some tiny defects like
dust and inter damages need finer-grained resolutions to
locate and classify. Thus, in our future work, we will fur-
ther exploit vision-language-action models to optimize the
drone operation for data collection, such as decreasing the
flight height when detecting the possible tiny defects, by the
drone’s autonomous decision-making.

Extension Applications. While DD-LIVM is designed
for PV defect detection, the idea of DTFT strategy can be simi-
larly applied to other infrared-visible inspection applications
such as substation or mechanical equipment monitoring,
where the two modalities process asymmetric semantics as
well. Our two fine-tuned encoders could be further adapted
to these similar applications as initial backbones. Besides, the
insight of alternating modality mask behind DTFT can bene-
fit the semantic alignment of the other image-wise modalities
such as the depth images.

7 Conclusion

This paper introduces DD-LIVM, the first large infrared-
visible model to enable cross-domain PV defect detection
with infrared and visible images, without any prior informa-
tion of new domains. To achieve this, DD-LIVM leverages
infrared and visible FM encoders as backbones and proposes
a three-step fine-tuning strategy based on alternating modal-
ity masks, thereby extracting generalizable infrared-visible
feature maps that fit the specific semantics of PV defects.
For practical employment of DD-LIVM, we further propose
a universal spatial alignment algorithm for dual-modal im-
ages, and develop source data augmentation and adaptive
detection head selection schemes based on infrared hotspot
characteristics. We collect 7078 dual-modal images with 7297
defects in four cities’ real-world PV power stations under
nine different settings for evaluation. The experimental re-
sults demonstrate that DD-LIVM can achieve a high accuracy
of 87.7% in cross-domain defect detection, outperforming the
SOTA schemes by 17.3%. DD-LIVM delivers valuable insights
into multimodal alignment and semantic-level fusion, and
the utilization of foundation models in mobile systems.
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